Metamath Proof Explorer


Theorem pzriprnglem3

Description: Lemma 3 for pzriprng : An element of I is an ordered pair. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
Assertion pzriprnglem3 XIxX=x0

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 2 eleq2i XIX×0
4 elxp2 X×0xy0X=xy
5 0z 0
6 opeq2 y=0xy=x0
7 6 eqeq2d y=0X=xyX=x0
8 7 rexsng 0y0X=xyX=x0
9 5 8 ax-mp y0X=xyX=x0
10 9 rexbii xy0X=xyxX=x0
11 3 4 10 3bitri XIxX=x0