| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|
| 2 |
|
pzriprng.i |
|
| 3 |
|
0z |
|
| 4 |
|
c0ex |
|
| 5 |
4
|
snss |
|
| 6 |
3 5
|
mpbi |
|
| 7 |
|
xpss2 |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
1
|
pzriprnglem2 |
|
| 10 |
8 2 9
|
3sstr4i |
|
| 11 |
3
|
ne0ii |
|
| 12 |
4
|
snnz |
|
| 13 |
11 12
|
pm3.2i |
|
| 14 |
|
xpnz |
|
| 15 |
13 14
|
mpbi |
|
| 16 |
2 15
|
eqnetri |
|
| 17 |
1 2
|
pzriprnglem3 |
|
| 18 |
1 2
|
pzriprnglem3 |
|
| 19 |
|
simpr |
|
| 20 |
19
|
adantr |
|
| 21 |
|
id |
|
| 22 |
20 21
|
oveqan12d |
|
| 23 |
|
zringbas |
|
| 24 |
|
zringring |
|
| 25 |
24
|
a1i |
|
| 26 |
|
simpl |
|
| 27 |
3
|
a1i |
|
| 28 |
|
simpr |
|
| 29 |
|
zaddcl |
|
| 30 |
|
00id |
|
| 31 |
30 3
|
eqeltri |
|
| 32 |
31
|
a1i |
|
| 33 |
|
zringplusg |
|
| 34 |
|
eqid |
|
| 35 |
1 23 23 25 25 26 27 28 27 29 32 33 33 34
|
xpsadd |
|
| 36 |
4
|
snid |
|
| 37 |
30 36
|
eqeltri |
|
| 38 |
2
|
eleq2i |
|
| 39 |
|
opelxp |
|
| 40 |
38 39
|
bitri |
|
| 41 |
29 37 40
|
sylanblrc |
|
| 42 |
35 41
|
eqeltrd |
|
| 43 |
42
|
ad4ant13 |
|
| 44 |
22 43
|
eqeltrd |
|
| 45 |
44
|
rexlimdva2 |
|
| 46 |
18 45
|
biimtrid |
|
| 47 |
46
|
ralrimiv |
|
| 48 |
|
zringgrp |
|
| 49 |
48
|
a1i |
|
| 50 |
|
id |
|
| 51 |
3
|
a1i |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
1 23 23 49 49 50 51 52 52 53
|
xpsinv |
|
| 55 |
|
zringinvg |
|
| 56 |
|
znegcl |
|
| 57 |
55 56
|
eqeltrrd |
|
| 58 |
|
neg0 |
|
| 59 |
58 36
|
eqeltri |
|
| 60 |
|
zringinvg |
|
| 61 |
60
|
eleq1d |
|
| 62 |
3 61
|
mp1i |
|
| 63 |
59 62
|
mpbii |
|
| 64 |
57 63
|
opelxpd |
|
| 65 |
54 64
|
eqeltrd |
|
| 66 |
65
|
adantr |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
adantl |
|
| 69 |
2
|
a1i |
|
| 70 |
66 68 69
|
3eltr4d |
|
| 71 |
47 70
|
jca |
|
| 72 |
71
|
rexlimiva |
|
| 73 |
17 72
|
sylbi |
|
| 74 |
73
|
rgen |
|
| 75 |
1
|
pzriprnglem1 |
|
| 76 |
|
rnggrp |
|
| 77 |
75 76
|
ax-mp |
|
| 78 |
|
eqid |
|
| 79 |
78 34 53
|
issubg2 |
|
| 80 |
77 79
|
ax-mp |
|
| 81 |
10 16 74 80
|
mpbir3an |
|