Metamath Proof Explorer


Theorem pzriprnglem4

Description: Lemma 4 for pzriprng : I is a subgroup of R . (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
Assertion pzriprnglem4 ISubGrpR

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 0z 0
4 c0ex 0V
5 4 snss 00
6 3 5 mpbi 0
7 xpss2 0×0×
8 6 7 ax-mp ×0×
9 1 pzriprnglem2 BaseR=×
10 8 2 9 3sstr4i IBaseR
11 3 ne0ii
12 4 snnz 0
13 11 12 pm3.2i 0
14 xpnz 0×0
15 13 14 mpbi ×0
16 2 15 eqnetri I
17 1 2 pzriprnglem3 xIax=a0
18 1 2 pzriprnglem3 yIby=b0
19 simpr ax=a0x=a0
20 19 adantr ax=a0bx=a0
21 id y=b0y=b0
22 20 21 oveqan12d ax=a0by=b0x+Ry=a0+Rb0
23 zringbas =Basering
24 zringring ringRing
25 24 a1i abringRing
26 simpl aba
27 3 a1i ab0
28 simpr abb
29 zaddcl aba+b
30 00id 0+0=0
31 30 3 eqeltri 0+0
32 31 a1i ab0+0
33 zringplusg +=+ring
34 eqid +R=+R
35 1 23 23 25 25 26 27 28 27 29 32 33 33 34 xpsadd aba0+Rb0=a+b0+0
36 4 snid 00
37 30 36 eqeltri 0+00
38 2 eleq2i a+b0+0Ia+b0+0×0
39 opelxp a+b0+0×0a+b0+00
40 38 39 bitri a+b0+0Ia+b0+00
41 29 37 40 sylanblrc aba+b0+0I
42 35 41 eqeltrd aba0+Rb0I
43 42 ad4ant13 ax=a0by=b0a0+Rb0I
44 22 43 eqeltrd ax=a0by=b0x+RyI
45 44 rexlimdva2 ax=a0by=b0x+RyI
46 18 45 biimtrid ax=a0yIx+RyI
47 46 ralrimiv ax=a0yIx+RyI
48 zringgrp ringGrp
49 48 a1i aringGrp
50 id aa
51 3 a1i a0
52 eqid invgring=invgring
53 eqid invgR=invgR
54 1 23 23 49 49 50 51 52 52 53 xpsinv ainvgRa0=invgringainvgring0
55 zringinvg aa=invgringa
56 znegcl aa
57 55 56 eqeltrrd ainvgringa
58 neg0 0=0
59 58 36 eqeltri 00
60 zringinvg 00=invgring0
61 60 eleq1d 000invgring00
62 3 61 mp1i a00invgring00
63 59 62 mpbii ainvgring00
64 57 63 opelxpd ainvgringainvgring0×0
65 54 64 eqeltrd ainvgRa0×0
66 65 adantr ax=a0invgRa0×0
67 fveq2 x=a0invgRx=invgRa0
68 67 adantl ax=a0invgRx=invgRa0
69 2 a1i ax=a0I=×0
70 66 68 69 3eltr4d ax=a0invgRxI
71 47 70 jca ax=a0yIx+RyIinvgRxI
72 71 rexlimiva ax=a0yIx+RyIinvgRxI
73 17 72 sylbi xIyIx+RyIinvgRxI
74 73 rgen xIyIx+RyIinvgRxI
75 1 pzriprnglem1 RRng
76 rnggrp RRngRGrp
77 75 76 ax-mp RGrp
78 eqid BaseR=BaseR
79 78 34 53 issubg2 RGrpISubGrpRIBaseRIxIyIx+RyIinvgRxI
80 77 79 ax-mp ISubGrpRIBaseRIxIyIx+RyIinvgRxI
81 10 16 74 80 mpbir3an ISubGrpR