Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Ring of integers
Example for a condition for a non-unital ring to be unital
pzriprnglem4
Next ⟩
pzriprnglem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
pzriprnglem4
Description:
Lemma 4 for
pzriprng
:
I
is a subgroup of
R
.
(Contributed by
AV
, 18-Mar-2025)
Ref
Expression
Hypotheses
pzriprng.r
⊢
R
=
ℤ
ring
×
𝑠
ℤ
ring
pzriprng.i
⊢
I
=
ℤ
×
0
Assertion
pzriprnglem4
⊢
I
∈
SubGrp
R
Proof
Step
Hyp
Ref
Expression
1
pzriprng.r
⊢
R
=
ℤ
ring
×
𝑠
ℤ
ring
2
pzriprng.i
⊢
I
=
ℤ
×
0
3
0z
⊢
0
∈
ℤ
4
c0ex
⊢
0
∈
V
5
4
snss
⊢
0
∈
ℤ
↔
0
⊆
ℤ
6
3
5
mpbi
⊢
0
⊆
ℤ
7
xpss2
⊢
0
⊆
ℤ
→
ℤ
×
0
⊆
ℤ
×
ℤ
8
6
7
ax-mp
⊢
ℤ
×
0
⊆
ℤ
×
ℤ
9
1
pzriprnglem2
⊢
Base
R
=
ℤ
×
ℤ
10
8
2
9
3sstr4i
⊢
I
⊆
Base
R
11
3
ne0ii
⊢
ℤ
≠
∅
12
4
snnz
⊢
0
≠
∅
13
11
12
pm3.2i
⊢
ℤ
≠
∅
∧
0
≠
∅
14
xpnz
⊢
ℤ
≠
∅
∧
0
≠
∅
↔
ℤ
×
0
≠
∅
15
13
14
mpbi
⊢
ℤ
×
0
≠
∅
16
2
15
eqnetri
⊢
I
≠
∅
17
1
2
pzriprnglem3
⊢
x
∈
I
↔
∃
a
∈
ℤ
x
=
a
0
18
1
2
pzriprnglem3
⊢
y
∈
I
↔
∃
b
∈
ℤ
y
=
b
0
19
simpr
⊢
a
∈
ℤ
∧
x
=
a
0
→
x
=
a
0
20
19
adantr
⊢
a
∈
ℤ
∧
x
=
a
0
∧
b
∈
ℤ
→
x
=
a
0
21
id
⊢
y
=
b
0
→
y
=
b
0
22
20
21
oveqan12d
⊢
a
∈
ℤ
∧
x
=
a
0
∧
b
∈
ℤ
∧
y
=
b
0
→
x
+
R
y
=
a
0
+
R
b
0
23
zringbas
⊢
ℤ
=
Base
ℤ
ring
24
zringring
⊢
ℤ
ring
∈
Ring
25
24
a1i
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
ℤ
ring
∈
Ring
26
simpl
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
∈
ℤ
27
3
a1i
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
0
∈
ℤ
28
simpr
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
b
∈
ℤ
29
zaddcl
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
+
b
∈
ℤ
30
00id
⊢
0
+
0
=
0
31
30
3
eqeltri
⊢
0
+
0
∈
ℤ
32
31
a1i
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
0
+
0
∈
ℤ
33
zringplusg
⊢
+
=
+
ℤ
ring
34
eqid
⊢
+
R
=
+
R
35
1
23
23
25
25
26
27
28
27
29
32
33
33
34
xpsadd
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
0
+
R
b
0
=
a
+
b
0
+
0
36
4
snid
⊢
0
∈
0
37
30
36
eqeltri
⊢
0
+
0
∈
0
38
2
eleq2i
⊢
a
+
b
0
+
0
∈
I
↔
a
+
b
0
+
0
∈
ℤ
×
0
39
opelxp
⊢
a
+
b
0
+
0
∈
ℤ
×
0
↔
a
+
b
∈
ℤ
∧
0
+
0
∈
0
40
38
39
bitri
⊢
a
+
b
0
+
0
∈
I
↔
a
+
b
∈
ℤ
∧
0
+
0
∈
0
41
29
37
40
sylanblrc
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
+
b
0
+
0
∈
I
42
35
41
eqeltrd
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
0
+
R
b
0
∈
I
43
42
ad4ant13
⊢
a
∈
ℤ
∧
x
=
a
0
∧
b
∈
ℤ
∧
y
=
b
0
→
a
0
+
R
b
0
∈
I
44
22
43
eqeltrd
⊢
a
∈
ℤ
∧
x
=
a
0
∧
b
∈
ℤ
∧
y
=
b
0
→
x
+
R
y
∈
I
45
44
rexlimdva2
⊢
a
∈
ℤ
∧
x
=
a
0
→
∃
b
∈
ℤ
y
=
b
0
→
x
+
R
y
∈
I
46
18
45
biimtrid
⊢
a
∈
ℤ
∧
x
=
a
0
→
y
∈
I
→
x
+
R
y
∈
I
47
46
ralrimiv
⊢
a
∈
ℤ
∧
x
=
a
0
→
∀
y
∈
I
x
+
R
y
∈
I
48
zringgrp
⊢
ℤ
ring
∈
Grp
49
48
a1i
⊢
a
∈
ℤ
→
ℤ
ring
∈
Grp
50
id
⊢
a
∈
ℤ
→
a
∈
ℤ
51
3
a1i
⊢
a
∈
ℤ
→
0
∈
ℤ
52
eqid
⊢
inv
g
ℤ
ring
=
inv
g
ℤ
ring
53
eqid
⊢
inv
g
R
=
inv
g
R
54
1
23
23
49
49
50
51
52
52
53
xpsinv
⊢
a
∈
ℤ
→
inv
g
R
a
0
=
inv
g
ℤ
ring
a
inv
g
ℤ
ring
0
55
zringinvg
⊢
a
∈
ℤ
→
−
a
=
inv
g
ℤ
ring
a
56
znegcl
⊢
a
∈
ℤ
→
−
a
∈
ℤ
57
55
56
eqeltrrd
⊢
a
∈
ℤ
→
inv
g
ℤ
ring
a
∈
ℤ
58
neg0
⊢
−
0
=
0
59
58
36
eqeltri
⊢
−
0
∈
0
60
zringinvg
⊢
0
∈
ℤ
→
−
0
=
inv
g
ℤ
ring
0
61
60
eleq1d
⊢
0
∈
ℤ
→
−
0
∈
0
↔
inv
g
ℤ
ring
0
∈
0
62
3
61
mp1i
⊢
a
∈
ℤ
→
−
0
∈
0
↔
inv
g
ℤ
ring
0
∈
0
63
59
62
mpbii
⊢
a
∈
ℤ
→
inv
g
ℤ
ring
0
∈
0
64
57
63
opelxpd
⊢
a
∈
ℤ
→
inv
g
ℤ
ring
a
inv
g
ℤ
ring
0
∈
ℤ
×
0
65
54
64
eqeltrd
⊢
a
∈
ℤ
→
inv
g
R
a
0
∈
ℤ
×
0
66
65
adantr
⊢
a
∈
ℤ
∧
x
=
a
0
→
inv
g
R
a
0
∈
ℤ
×
0
67
fveq2
⊢
x
=
a
0
→
inv
g
R
x
=
inv
g
R
a
0
68
67
adantl
⊢
a
∈
ℤ
∧
x
=
a
0
→
inv
g
R
x
=
inv
g
R
a
0
69
2
a1i
⊢
a
∈
ℤ
∧
x
=
a
0
→
I
=
ℤ
×
0
70
66
68
69
3eltr4d
⊢
a
∈
ℤ
∧
x
=
a
0
→
inv
g
R
x
∈
I
71
47
70
jca
⊢
a
∈
ℤ
∧
x
=
a
0
→
∀
y
∈
I
x
+
R
y
∈
I
∧
inv
g
R
x
∈
I
72
71
rexlimiva
⊢
∃
a
∈
ℤ
x
=
a
0
→
∀
y
∈
I
x
+
R
y
∈
I
∧
inv
g
R
x
∈
I
73
17
72
sylbi
⊢
x
∈
I
→
∀
y
∈
I
x
+
R
y
∈
I
∧
inv
g
R
x
∈
I
74
73
rgen
⊢
∀
x
∈
I
∀
y
∈
I
x
+
R
y
∈
I
∧
inv
g
R
x
∈
I
75
1
pzriprnglem1
⊢
R
∈
Rng
76
rnggrp
⊢
R
∈
Rng
→
R
∈
Grp
77
75
76
ax-mp
⊢
R
∈
Grp
78
eqid
⊢
Base
R
=
Base
R
79
78
34
53
issubg2
⊢
R
∈
Grp
→
I
∈
SubGrp
R
↔
I
⊆
Base
R
∧
I
≠
∅
∧
∀
x
∈
I
∀
y
∈
I
x
+
R
y
∈
I
∧
inv
g
R
x
∈
I
80
77
79
ax-mp
⊢
I
∈
SubGrp
R
↔
I
⊆
Base
R
∧
I
≠
∅
∧
∀
x
∈
I
∀
y
∈
I
x
+
R
y
∈
I
∧
inv
g
R
x
∈
I
81
10
16
74
80
mpbir3an
⊢
I
∈
SubGrp
R