| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
| 2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
| 3 |
|
0z |
|- 0 e. ZZ |
| 4 |
|
c0ex |
|- 0 e. _V |
| 5 |
4
|
snss |
|- ( 0 e. ZZ <-> { 0 } C_ ZZ ) |
| 6 |
3 5
|
mpbi |
|- { 0 } C_ ZZ |
| 7 |
|
xpss2 |
|- ( { 0 } C_ ZZ -> ( ZZ X. { 0 } ) C_ ( ZZ X. ZZ ) ) |
| 8 |
6 7
|
ax-mp |
|- ( ZZ X. { 0 } ) C_ ( ZZ X. ZZ ) |
| 9 |
1
|
pzriprnglem2 |
|- ( Base ` R ) = ( ZZ X. ZZ ) |
| 10 |
8 2 9
|
3sstr4i |
|- I C_ ( Base ` R ) |
| 11 |
3
|
ne0ii |
|- ZZ =/= (/) |
| 12 |
4
|
snnz |
|- { 0 } =/= (/) |
| 13 |
11 12
|
pm3.2i |
|- ( ZZ =/= (/) /\ { 0 } =/= (/) ) |
| 14 |
|
xpnz |
|- ( ( ZZ =/= (/) /\ { 0 } =/= (/) ) <-> ( ZZ X. { 0 } ) =/= (/) ) |
| 15 |
13 14
|
mpbi |
|- ( ZZ X. { 0 } ) =/= (/) |
| 16 |
2 15
|
eqnetri |
|- I =/= (/) |
| 17 |
1 2
|
pzriprnglem3 |
|- ( x e. I <-> E. a e. ZZ x = <. a , 0 >. ) |
| 18 |
1 2
|
pzriprnglem3 |
|- ( y e. I <-> E. b e. ZZ y = <. b , 0 >. ) |
| 19 |
|
simpr |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> x = <. a , 0 >. ) |
| 20 |
19
|
adantr |
|- ( ( ( a e. ZZ /\ x = <. a , 0 >. ) /\ b e. ZZ ) -> x = <. a , 0 >. ) |
| 21 |
|
id |
|- ( y = <. b , 0 >. -> y = <. b , 0 >. ) |
| 22 |
20 21
|
oveqan12d |
|- ( ( ( ( a e. ZZ /\ x = <. a , 0 >. ) /\ b e. ZZ ) /\ y = <. b , 0 >. ) -> ( x ( +g ` R ) y ) = ( <. a , 0 >. ( +g ` R ) <. b , 0 >. ) ) |
| 23 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 24 |
|
zringring |
|- ZZring e. Ring |
| 25 |
24
|
a1i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ZZring e. Ring ) |
| 26 |
|
simpl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> a e. ZZ ) |
| 27 |
3
|
a1i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 0 e. ZZ ) |
| 28 |
|
simpr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> b e. ZZ ) |
| 29 |
|
zaddcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a + b ) e. ZZ ) |
| 30 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 31 |
30 3
|
eqeltri |
|- ( 0 + 0 ) e. ZZ |
| 32 |
31
|
a1i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( 0 + 0 ) e. ZZ ) |
| 33 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
| 34 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 35 |
1 23 23 25 25 26 27 28 27 29 32 33 33 34
|
xpsadd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( <. a , 0 >. ( +g ` R ) <. b , 0 >. ) = <. ( a + b ) , ( 0 + 0 ) >. ) |
| 36 |
4
|
snid |
|- 0 e. { 0 } |
| 37 |
30 36
|
eqeltri |
|- ( 0 + 0 ) e. { 0 } |
| 38 |
2
|
eleq2i |
|- ( <. ( a + b ) , ( 0 + 0 ) >. e. I <-> <. ( a + b ) , ( 0 + 0 ) >. e. ( ZZ X. { 0 } ) ) |
| 39 |
|
opelxp |
|- ( <. ( a + b ) , ( 0 + 0 ) >. e. ( ZZ X. { 0 } ) <-> ( ( a + b ) e. ZZ /\ ( 0 + 0 ) e. { 0 } ) ) |
| 40 |
38 39
|
bitri |
|- ( <. ( a + b ) , ( 0 + 0 ) >. e. I <-> ( ( a + b ) e. ZZ /\ ( 0 + 0 ) e. { 0 } ) ) |
| 41 |
29 37 40
|
sylanblrc |
|- ( ( a e. ZZ /\ b e. ZZ ) -> <. ( a + b ) , ( 0 + 0 ) >. e. I ) |
| 42 |
35 41
|
eqeltrd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( <. a , 0 >. ( +g ` R ) <. b , 0 >. ) e. I ) |
| 43 |
42
|
ad4ant13 |
|- ( ( ( ( a e. ZZ /\ x = <. a , 0 >. ) /\ b e. ZZ ) /\ y = <. b , 0 >. ) -> ( <. a , 0 >. ( +g ` R ) <. b , 0 >. ) e. I ) |
| 44 |
22 43
|
eqeltrd |
|- ( ( ( ( a e. ZZ /\ x = <. a , 0 >. ) /\ b e. ZZ ) /\ y = <. b , 0 >. ) -> ( x ( +g ` R ) y ) e. I ) |
| 45 |
44
|
rexlimdva2 |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> ( E. b e. ZZ y = <. b , 0 >. -> ( x ( +g ` R ) y ) e. I ) ) |
| 46 |
18 45
|
biimtrid |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> ( y e. I -> ( x ( +g ` R ) y ) e. I ) ) |
| 47 |
46
|
ralrimiv |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> A. y e. I ( x ( +g ` R ) y ) e. I ) |
| 48 |
|
zringgrp |
|- ZZring e. Grp |
| 49 |
48
|
a1i |
|- ( a e. ZZ -> ZZring e. Grp ) |
| 50 |
|
id |
|- ( a e. ZZ -> a e. ZZ ) |
| 51 |
3
|
a1i |
|- ( a e. ZZ -> 0 e. ZZ ) |
| 52 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
| 53 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 54 |
1 23 23 49 49 50 51 52 52 53
|
xpsinv |
|- ( a e. ZZ -> ( ( invg ` R ) ` <. a , 0 >. ) = <. ( ( invg ` ZZring ) ` a ) , ( ( invg ` ZZring ) ` 0 ) >. ) |
| 55 |
|
zringinvg |
|- ( a e. ZZ -> -u a = ( ( invg ` ZZring ) ` a ) ) |
| 56 |
|
znegcl |
|- ( a e. ZZ -> -u a e. ZZ ) |
| 57 |
55 56
|
eqeltrrd |
|- ( a e. ZZ -> ( ( invg ` ZZring ) ` a ) e. ZZ ) |
| 58 |
|
neg0 |
|- -u 0 = 0 |
| 59 |
58 36
|
eqeltri |
|- -u 0 e. { 0 } |
| 60 |
|
zringinvg |
|- ( 0 e. ZZ -> -u 0 = ( ( invg ` ZZring ) ` 0 ) ) |
| 61 |
60
|
eleq1d |
|- ( 0 e. ZZ -> ( -u 0 e. { 0 } <-> ( ( invg ` ZZring ) ` 0 ) e. { 0 } ) ) |
| 62 |
3 61
|
mp1i |
|- ( a e. ZZ -> ( -u 0 e. { 0 } <-> ( ( invg ` ZZring ) ` 0 ) e. { 0 } ) ) |
| 63 |
59 62
|
mpbii |
|- ( a e. ZZ -> ( ( invg ` ZZring ) ` 0 ) e. { 0 } ) |
| 64 |
57 63
|
opelxpd |
|- ( a e. ZZ -> <. ( ( invg ` ZZring ) ` a ) , ( ( invg ` ZZring ) ` 0 ) >. e. ( ZZ X. { 0 } ) ) |
| 65 |
54 64
|
eqeltrd |
|- ( a e. ZZ -> ( ( invg ` R ) ` <. a , 0 >. ) e. ( ZZ X. { 0 } ) ) |
| 66 |
65
|
adantr |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> ( ( invg ` R ) ` <. a , 0 >. ) e. ( ZZ X. { 0 } ) ) |
| 67 |
|
fveq2 |
|- ( x = <. a , 0 >. -> ( ( invg ` R ) ` x ) = ( ( invg ` R ) ` <. a , 0 >. ) ) |
| 68 |
67
|
adantl |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> ( ( invg ` R ) ` x ) = ( ( invg ` R ) ` <. a , 0 >. ) ) |
| 69 |
2
|
a1i |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> I = ( ZZ X. { 0 } ) ) |
| 70 |
66 68 69
|
3eltr4d |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> ( ( invg ` R ) ` x ) e. I ) |
| 71 |
47 70
|
jca |
|- ( ( a e. ZZ /\ x = <. a , 0 >. ) -> ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) |
| 72 |
71
|
rexlimiva |
|- ( E. a e. ZZ x = <. a , 0 >. -> ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) |
| 73 |
17 72
|
sylbi |
|- ( x e. I -> ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) |
| 74 |
73
|
rgen |
|- A. x e. I ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) |
| 75 |
1
|
pzriprnglem1 |
|- R e. Rng |
| 76 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 77 |
75 76
|
ax-mp |
|- R e. Grp |
| 78 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 79 |
78 34 53
|
issubg2 |
|- ( R e. Grp -> ( I e. ( SubGrp ` R ) <-> ( I C_ ( Base ` R ) /\ I =/= (/) /\ A. x e. I ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) ) ) |
| 80 |
77 79
|
ax-mp |
|- ( I e. ( SubGrp ` R ) <-> ( I C_ ( Base ` R ) /\ I =/= (/) /\ A. x e. I ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) ) |
| 81 |
10 16 74 80
|
mpbir3an |
|- I e. ( SubGrp ` R ) |