Metamath Proof Explorer


Theorem pzriprnglem1

Description: Lemma 1 for pzriprng : R is a non-unital (actually a unital!) ring. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypothesis pzriprng.r
|- R = ( ZZring Xs. ZZring )
Assertion pzriprnglem1
|- R e. Rng

Proof

Step Hyp Ref Expression
1 pzriprng.r
 |-  R = ( ZZring Xs. ZZring )
2 zringrng
 |-  ZZring e. Rng
3 id
 |-  ( ZZring e. Rng -> ZZring e. Rng )
4 1 3 3 xpsrngd
 |-  ( ZZring e. Rng -> R e. Rng )
5 2 4 ax-mp
 |-  R e. Rng