Description: Lemma 1 for pzriprng : R is a non-unital (actually a unital!) ring. (Contributed by AV, 17-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pzriprng.r | |- R = ( ZZring Xs. ZZring ) |
|
| Assertion | pzriprnglem1 | |- R e. Rng |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.r | |- R = ( ZZring Xs. ZZring ) |
|
| 2 | zringrng | |- ZZring e. Rng |
|
| 3 | id | |- ( ZZring e. Rng -> ZZring e. Rng ) |
|
| 4 | 1 3 3 | xpsrngd | |- ( ZZring e. Rng -> R e. Rng ) |
| 5 | 2 4 | ax-mp | |- R e. Rng |