Metamath Proof Explorer


Theorem pzriprnglem1

Description: Lemma 1 for pzriprng : R is a non-unital (actually a unital!) ring. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypothesis pzriprng.r R=ring×𝑠ring
Assertion pzriprnglem1 RRng

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 zringrng ringRng
3 id ringRngringRng
4 1 3 3 xpsrngd ringRngRRng
5 2 4 ax-mp RRng