Metamath Proof Explorer


Theorem pzriprnglem2

Description: Lemma 2 for pzriprng : The base set of R is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypothesis pzriprng.r
|- R = ( ZZring Xs. ZZring )
Assertion pzriprnglem2
|- ( Base ` R ) = ( ZZ X. ZZ )

Proof

Step Hyp Ref Expression
1 pzriprng.r
 |-  R = ( ZZring Xs. ZZring )
2 zringring
 |-  ZZring e. Ring
3 zringbas
 |-  ZZ = ( Base ` ZZring )
4 id
 |-  ( ZZring e. Ring -> ZZring e. Ring )
5 1 3 3 4 4 xpsbas
 |-  ( ZZring e. Ring -> ( ZZ X. ZZ ) = ( Base ` R ) )
6 2 5 ax-mp
 |-  ( ZZ X. ZZ ) = ( Base ` R )
7 6 eqcomi
 |-  ( Base ` R ) = ( ZZ X. ZZ )