Description: Lemma 2 for pzriprng : The base set of R is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pzriprng.r | |- R = ( ZZring Xs. ZZring ) |
|
Assertion | pzriprnglem2 | |- ( Base ` R ) = ( ZZ X. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | |- R = ( ZZring Xs. ZZring ) |
|
2 | zringring | |- ZZring e. Ring |
|
3 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
4 | id | |- ( ZZring e. Ring -> ZZring e. Ring ) |
|
5 | 1 3 3 4 4 | xpsbas | |- ( ZZring e. Ring -> ( ZZ X. ZZ ) = ( Base ` R ) ) |
6 | 2 5 | ax-mp | |- ( ZZ X. ZZ ) = ( Base ` R ) |
7 | 6 | eqcomi | |- ( Base ` R ) = ( ZZ X. ZZ ) |