Description: Lemma 2 for pzriprng : The base set of R is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pzriprng.r | ⊢ 𝑅 = ( ℤring ×s ℤring ) | |
Assertion | pzriprnglem2 | ⊢ ( Base ‘ 𝑅 ) = ( ℤ × ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | ⊢ 𝑅 = ( ℤring ×s ℤring ) | |
2 | zringring | ⊢ ℤring ∈ Ring | |
3 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
4 | id | ⊢ ( ℤring ∈ Ring → ℤring ∈ Ring ) | |
5 | 1 3 3 4 4 | xpsbas | ⊢ ( ℤring ∈ Ring → ( ℤ × ℤ ) = ( Base ‘ 𝑅 ) ) |
6 | 2 5 | ax-mp | ⊢ ( ℤ × ℤ ) = ( Base ‘ 𝑅 ) |
7 | 6 | eqcomi | ⊢ ( Base ‘ 𝑅 ) = ( ℤ × ℤ ) |