Metamath Proof Explorer


Theorem pzriprnglem2

Description: Lemma 2 for pzriprng : The base set of R is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypothesis pzriprng.r 𝑅 = ( ℤring ×sring )
Assertion pzriprnglem2 ( Base ‘ 𝑅 ) = ( ℤ × ℤ )

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 zringring ring ∈ Ring
3 zringbas ℤ = ( Base ‘ ℤring )
4 id ( ℤring ∈ Ring → ℤring ∈ Ring )
5 1 3 3 4 4 xpsbas ( ℤring ∈ Ring → ( ℤ × ℤ ) = ( Base ‘ 𝑅 ) )
6 2 5 ax-mp ( ℤ × ℤ ) = ( Base ‘ 𝑅 )
7 6 eqcomi ( Base ‘ 𝑅 ) = ( ℤ × ℤ )