Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
2
|
eleq2i |
|- ( X e. I <-> X e. ( ZZ X. { 0 } ) ) |
4 |
|
elxp2 |
|- ( X e. ( ZZ X. { 0 } ) <-> E. x e. ZZ E. y e. { 0 } X = <. x , y >. ) |
5 |
|
0z |
|- 0 e. ZZ |
6 |
|
opeq2 |
|- ( y = 0 -> <. x , y >. = <. x , 0 >. ) |
7 |
6
|
eqeq2d |
|- ( y = 0 -> ( X = <. x , y >. <-> X = <. x , 0 >. ) ) |
8 |
7
|
rexsng |
|- ( 0 e. ZZ -> ( E. y e. { 0 } X = <. x , y >. <-> X = <. x , 0 >. ) ) |
9 |
5 8
|
ax-mp |
|- ( E. y e. { 0 } X = <. x , y >. <-> X = <. x , 0 >. ) |
10 |
9
|
rexbii |
|- ( E. x e. ZZ E. y e. { 0 } X = <. x , y >. <-> E. x e. ZZ X = <. x , 0 >. ) |
11 |
3 4 10
|
3bitri |
|- ( X e. I <-> E. x e. ZZ X = <. x , 0 >. ) |