Metamath Proof Explorer


Theorem pzriprnglem3

Description: Lemma 3 for pzriprng : An element of I is an ordered pair. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r
|- R = ( ZZring Xs. ZZring )
pzriprng.i
|- I = ( ZZ X. { 0 } )
Assertion pzriprnglem3
|- ( X e. I <-> E. x e. ZZ X = <. x , 0 >. )

Proof

Step Hyp Ref Expression
1 pzriprng.r
 |-  R = ( ZZring Xs. ZZring )
2 pzriprng.i
 |-  I = ( ZZ X. { 0 } )
3 2 eleq2i
 |-  ( X e. I <-> X e. ( ZZ X. { 0 } ) )
4 elxp2
 |-  ( X e. ( ZZ X. { 0 } ) <-> E. x e. ZZ E. y e. { 0 } X = <. x , y >. )
5 0z
 |-  0 e. ZZ
6 opeq2
 |-  ( y = 0 -> <. x , y >. = <. x , 0 >. )
7 6 eqeq2d
 |-  ( y = 0 -> ( X = <. x , y >. <-> X = <. x , 0 >. ) )
8 7 rexsng
 |-  ( 0 e. ZZ -> ( E. y e. { 0 } X = <. x , y >. <-> X = <. x , 0 >. ) )
9 5 8 ax-mp
 |-  ( E. y e. { 0 } X = <. x , y >. <-> X = <. x , 0 >. )
10 9 rexbii
 |-  ( E. x e. ZZ E. y e. { 0 } X = <. x , y >. <-> E. x e. ZZ X = <. x , 0 >. )
11 3 4 10 3bitri
 |-  ( X e. I <-> E. x e. ZZ X = <. x , 0 >. )