Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
1 2
|
pzriprnglem4 |
|- I e. ( SubGrp ` R ) |
4 |
1 2
|
pzriprnglem3 |
|- ( x e. I <-> E. a e. ZZ x = <. a , 0 >. ) |
5 |
1 2
|
pzriprnglem3 |
|- ( y e. I <-> E. b e. ZZ y = <. b , 0 >. ) |
6 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
7 |
|
zringring |
|- ZZring e. Ring |
8 |
7
|
a1i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ZZring e. Ring ) |
9 |
|
simpl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> a e. ZZ ) |
10 |
|
0zd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 0 e. ZZ ) |
11 |
|
simpr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> b e. ZZ ) |
12 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
13 |
12
|
eqcomi |
|- ( .r ` ZZring ) = x. |
14 |
13
|
oveqi |
|- ( a ( .r ` ZZring ) b ) = ( a x. b ) |
15 |
|
zmulcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a x. b ) e. ZZ ) |
16 |
14 15
|
eqeltrid |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a ( .r ` ZZring ) b ) e. ZZ ) |
17 |
13
|
oveqi |
|- ( 0 ( .r ` ZZring ) 0 ) = ( 0 x. 0 ) |
18 |
|
0cn |
|- 0 e. CC |
19 |
18
|
mul02i |
|- ( 0 x. 0 ) = 0 |
20 |
17 19
|
eqtri |
|- ( 0 ( .r ` ZZring ) 0 ) = 0 |
21 |
|
0z |
|- 0 e. ZZ |
22 |
20 21
|
eqeltri |
|- ( 0 ( .r ` ZZring ) 0 ) e. ZZ |
23 |
22
|
a1i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( 0 ( .r ` ZZring ) 0 ) e. ZZ ) |
24 |
|
eqid |
|- ( .r ` ZZring ) = ( .r ` ZZring ) |
25 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
26 |
1 6 6 8 8 9 10 11 10 16 23 24 24 25
|
xpsmul |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( <. a , 0 >. ( .r ` R ) <. b , 0 >. ) = <. ( a ( .r ` ZZring ) b ) , ( 0 ( .r ` ZZring ) 0 ) >. ) |
27 |
|
c0ex |
|- 0 e. _V |
28 |
27
|
snid |
|- 0 e. { 0 } |
29 |
28
|
a1i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 0 e. { 0 } ) |
30 |
20 29
|
eqeltrid |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( 0 ( .r ` ZZring ) 0 ) e. { 0 } ) |
31 |
16 30
|
opelxpd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> <. ( a ( .r ` ZZring ) b ) , ( 0 ( .r ` ZZring ) 0 ) >. e. ( ZZ X. { 0 } ) ) |
32 |
26 31
|
eqeltrd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( <. a , 0 >. ( .r ` R ) <. b , 0 >. ) e. ( ZZ X. { 0 } ) ) |
33 |
32
|
adantr |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( y = <. b , 0 >. /\ x = <. a , 0 >. ) ) -> ( <. a , 0 >. ( .r ` R ) <. b , 0 >. ) e. ( ZZ X. { 0 } ) ) |
34 |
|
oveq12 |
|- ( ( x = <. a , 0 >. /\ y = <. b , 0 >. ) -> ( x ( .r ` R ) y ) = ( <. a , 0 >. ( .r ` R ) <. b , 0 >. ) ) |
35 |
34
|
ancoms |
|- ( ( y = <. b , 0 >. /\ x = <. a , 0 >. ) -> ( x ( .r ` R ) y ) = ( <. a , 0 >. ( .r ` R ) <. b , 0 >. ) ) |
36 |
35
|
adantl |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( y = <. b , 0 >. /\ x = <. a , 0 >. ) ) -> ( x ( .r ` R ) y ) = ( <. a , 0 >. ( .r ` R ) <. b , 0 >. ) ) |
37 |
2
|
a1i |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( y = <. b , 0 >. /\ x = <. a , 0 >. ) ) -> I = ( ZZ X. { 0 } ) ) |
38 |
33 36 37
|
3eltr4d |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( y = <. b , 0 >. /\ x = <. a , 0 >. ) ) -> ( x ( .r ` R ) y ) e. I ) |
39 |
38
|
exp32 |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( y = <. b , 0 >. -> ( x = <. a , 0 >. -> ( x ( .r ` R ) y ) e. I ) ) ) |
40 |
39
|
rexlimdva |
|- ( a e. ZZ -> ( E. b e. ZZ y = <. b , 0 >. -> ( x = <. a , 0 >. -> ( x ( .r ` R ) y ) e. I ) ) ) |
41 |
40
|
com23 |
|- ( a e. ZZ -> ( x = <. a , 0 >. -> ( E. b e. ZZ y = <. b , 0 >. -> ( x ( .r ` R ) y ) e. I ) ) ) |
42 |
41
|
rexlimiv |
|- ( E. a e. ZZ x = <. a , 0 >. -> ( E. b e. ZZ y = <. b , 0 >. -> ( x ( .r ` R ) y ) e. I ) ) |
43 |
42
|
imp |
|- ( ( E. a e. ZZ x = <. a , 0 >. /\ E. b e. ZZ y = <. b , 0 >. ) -> ( x ( .r ` R ) y ) e. I ) |
44 |
4 5 43
|
syl2anb |
|- ( ( x e. I /\ y e. I ) -> ( x ( .r ` R ) y ) e. I ) |
45 |
44
|
rgen2 |
|- A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I |
46 |
1
|
pzriprnglem1 |
|- R e. Rng |
47 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
48 |
47 25
|
issubrng2 |
|- ( R e. Rng -> ( I e. ( SubRng ` R ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I ) ) ) |
49 |
46 48
|
ax-mp |
|- ( I e. ( SubRng ` R ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I ) ) |
50 |
3 45 49
|
mpbir2an |
|- I e. ( SubRng ` R ) |