Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
1 2
|
pzriprnglem3 |
|- ( X e. I <-> E. a e. ZZ X = <. a , 0 >. ) |
5 |
1 2
|
pzriprnglem5 |
|- I e. ( SubRng ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
3 6
|
ressmulr |
|- ( I e. ( SubRng ` R ) -> ( .r ` R ) = ( .r ` J ) ) |
8 |
7
|
eqcomd |
|- ( I e. ( SubRng ` R ) -> ( .r ` J ) = ( .r ` R ) ) |
9 |
5 8
|
ax-mp |
|- ( .r ` J ) = ( .r ` R ) |
10 |
9
|
oveqi |
|- ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) = ( <. 1 , 0 >. ( .r ` R ) <. a , 0 >. ) |
11 |
10
|
a1i |
|- ( a e. ZZ -> ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) = ( <. 1 , 0 >. ( .r ` R ) <. a , 0 >. ) ) |
12 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
13 |
|
zringring |
|- ZZring e. Ring |
14 |
13
|
a1i |
|- ( a e. ZZ -> ZZring e. Ring ) |
15 |
|
1zzd |
|- ( a e. ZZ -> 1 e. ZZ ) |
16 |
|
0z |
|- 0 e. ZZ |
17 |
16
|
a1i |
|- ( a e. ZZ -> 0 e. ZZ ) |
18 |
|
id |
|- ( a e. ZZ -> a e. ZZ ) |
19 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
20 |
19
|
oveqi |
|- ( 1 x. a ) = ( 1 ( .r ` ZZring ) a ) |
21 |
15 18
|
zmulcld |
|- ( a e. ZZ -> ( 1 x. a ) e. ZZ ) |
22 |
20 21
|
eqeltrrid |
|- ( a e. ZZ -> ( 1 ( .r ` ZZring ) a ) e. ZZ ) |
23 |
19
|
eqcomi |
|- ( .r ` ZZring ) = x. |
24 |
23
|
oveqi |
|- ( 0 ( .r ` ZZring ) 0 ) = ( 0 x. 0 ) |
25 |
|
id |
|- ( 0 e. ZZ -> 0 e. ZZ ) |
26 |
25 25
|
zmulcld |
|- ( 0 e. ZZ -> ( 0 x. 0 ) e. ZZ ) |
27 |
16 26
|
ax-mp |
|- ( 0 x. 0 ) e. ZZ |
28 |
24 27
|
eqeltri |
|- ( 0 ( .r ` ZZring ) 0 ) e. ZZ |
29 |
28
|
a1i |
|- ( a e. ZZ -> ( 0 ( .r ` ZZring ) 0 ) e. ZZ ) |
30 |
|
eqid |
|- ( .r ` ZZring ) = ( .r ` ZZring ) |
31 |
1 12 12 14 14 15 17 18 17 22 29 30 30 6
|
xpsmul |
|- ( a e. ZZ -> ( <. 1 , 0 >. ( .r ` R ) <. a , 0 >. ) = <. ( 1 ( .r ` ZZring ) a ) , ( 0 ( .r ` ZZring ) 0 ) >. ) |
32 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
33 |
32
|
mullidd |
|- ( a e. ZZ -> ( 1 x. a ) = a ) |
34 |
20 33
|
eqtr3id |
|- ( a e. ZZ -> ( 1 ( .r ` ZZring ) a ) = a ) |
35 |
|
0cn |
|- 0 e. CC |
36 |
35
|
mul02i |
|- ( 0 x. 0 ) = 0 |
37 |
24 36
|
eqtri |
|- ( 0 ( .r ` ZZring ) 0 ) = 0 |
38 |
37
|
a1i |
|- ( a e. ZZ -> ( 0 ( .r ` ZZring ) 0 ) = 0 ) |
39 |
34 38
|
opeq12d |
|- ( a e. ZZ -> <. ( 1 ( .r ` ZZring ) a ) , ( 0 ( .r ` ZZring ) 0 ) >. = <. a , 0 >. ) |
40 |
11 31 39
|
3eqtrd |
|- ( a e. ZZ -> ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) = <. a , 0 >. ) |
41 |
9
|
oveqi |
|- ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) = ( <. a , 0 >. ( .r ` R ) <. 1 , 0 >. ) |
42 |
41
|
a1i |
|- ( a e. ZZ -> ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) = ( <. a , 0 >. ( .r ` R ) <. 1 , 0 >. ) ) |
43 |
19
|
oveqi |
|- ( a x. 1 ) = ( a ( .r ` ZZring ) 1 ) |
44 |
18 15
|
zmulcld |
|- ( a e. ZZ -> ( a x. 1 ) e. ZZ ) |
45 |
43 44
|
eqeltrrid |
|- ( a e. ZZ -> ( a ( .r ` ZZring ) 1 ) e. ZZ ) |
46 |
1 12 12 14 14 18 17 15 17 45 29 30 30 6
|
xpsmul |
|- ( a e. ZZ -> ( <. a , 0 >. ( .r ` R ) <. 1 , 0 >. ) = <. ( a ( .r ` ZZring ) 1 ) , ( 0 ( .r ` ZZring ) 0 ) >. ) |
47 |
23
|
oveqi |
|- ( a ( .r ` ZZring ) 1 ) = ( a x. 1 ) |
48 |
32
|
mulridd |
|- ( a e. ZZ -> ( a x. 1 ) = a ) |
49 |
47 48
|
eqtrid |
|- ( a e. ZZ -> ( a ( .r ` ZZring ) 1 ) = a ) |
50 |
49 38
|
opeq12d |
|- ( a e. ZZ -> <. ( a ( .r ` ZZring ) 1 ) , ( 0 ( .r ` ZZring ) 0 ) >. = <. a , 0 >. ) |
51 |
42 46 50
|
3eqtrd |
|- ( a e. ZZ -> ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) = <. a , 0 >. ) |
52 |
40 51
|
jca |
|- ( a e. ZZ -> ( ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) = <. a , 0 >. /\ ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) = <. a , 0 >. ) ) |
53 |
|
oveq2 |
|- ( X = <. a , 0 >. -> ( <. 1 , 0 >. ( .r ` J ) X ) = ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) ) |
54 |
|
id |
|- ( X = <. a , 0 >. -> X = <. a , 0 >. ) |
55 |
53 54
|
eqeq12d |
|- ( X = <. a , 0 >. -> ( ( <. 1 , 0 >. ( .r ` J ) X ) = X <-> ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) = <. a , 0 >. ) ) |
56 |
|
oveq1 |
|- ( X = <. a , 0 >. -> ( X ( .r ` J ) <. 1 , 0 >. ) = ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) ) |
57 |
56 54
|
eqeq12d |
|- ( X = <. a , 0 >. -> ( ( X ( .r ` J ) <. 1 , 0 >. ) = X <-> ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) = <. a , 0 >. ) ) |
58 |
55 57
|
anbi12d |
|- ( X = <. a , 0 >. -> ( ( ( <. 1 , 0 >. ( .r ` J ) X ) = X /\ ( X ( .r ` J ) <. 1 , 0 >. ) = X ) <-> ( ( <. 1 , 0 >. ( .r ` J ) <. a , 0 >. ) = <. a , 0 >. /\ ( <. a , 0 >. ( .r ` J ) <. 1 , 0 >. ) = <. a , 0 >. ) ) ) |
59 |
52 58
|
syl5ibrcom |
|- ( a e. ZZ -> ( X = <. a , 0 >. -> ( ( <. 1 , 0 >. ( .r ` J ) X ) = X /\ ( X ( .r ` J ) <. 1 , 0 >. ) = X ) ) ) |
60 |
59
|
rexlimiv |
|- ( E. a e. ZZ X = <. a , 0 >. -> ( ( <. 1 , 0 >. ( .r ` J ) X ) = X /\ ( X ( .r ` J ) <. 1 , 0 >. ) = X ) ) |
61 |
4 60
|
sylbi |
|- ( X e. I -> ( ( <. 1 , 0 >. ( .r ` J ) X ) = X /\ ( X ( .r ` J ) <. 1 , 0 >. ) = X ) ) |