| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|
| 2 |
|
pzriprng.i |
|
| 3 |
1 2
|
pzriprnglem4 |
|
| 4 |
1 2
|
pzriprnglem3 |
|
| 5 |
1 2
|
pzriprnglem3 |
|
| 6 |
|
zringbas |
|
| 7 |
|
zringring |
|
| 8 |
7
|
a1i |
|
| 9 |
|
simpl |
|
| 10 |
|
0zd |
|
| 11 |
|
simpr |
|
| 12 |
|
zringmulr |
|
| 13 |
12
|
eqcomi |
|
| 14 |
13
|
oveqi |
|
| 15 |
|
zmulcl |
|
| 16 |
14 15
|
eqeltrid |
|
| 17 |
13
|
oveqi |
|
| 18 |
|
0cn |
|
| 19 |
18
|
mul02i |
|
| 20 |
17 19
|
eqtri |
|
| 21 |
|
0z |
|
| 22 |
20 21
|
eqeltri |
|
| 23 |
22
|
a1i |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
1 6 6 8 8 9 10 11 10 16 23 24 24 25
|
xpsmul |
|
| 27 |
|
c0ex |
|
| 28 |
27
|
snid |
|
| 29 |
28
|
a1i |
|
| 30 |
20 29
|
eqeltrid |
|
| 31 |
16 30
|
opelxpd |
|
| 32 |
26 31
|
eqeltrd |
|
| 33 |
32
|
adantr |
|
| 34 |
|
oveq12 |
|
| 35 |
34
|
ancoms |
|
| 36 |
35
|
adantl |
|
| 37 |
2
|
a1i |
|
| 38 |
33 36 37
|
3eltr4d |
|
| 39 |
38
|
exp32 |
|
| 40 |
39
|
rexlimdva |
|
| 41 |
40
|
com23 |
|
| 42 |
41
|
rexlimiv |
|
| 43 |
42
|
imp |
|
| 44 |
4 5 43
|
syl2anb |
|
| 45 |
44
|
rgen2 |
|
| 46 |
1
|
pzriprnglem1 |
|
| 47 |
|
eqid |
|
| 48 |
47 25
|
issubrng2 |
|
| 49 |
46 48
|
ax-mp |
|
| 50 |
3 45 49
|
mpbir2an |
|