Metamath Proof Explorer


Theorem pzriprnglem5

Description: Lemma 5 for pzriprng : I is a subring of the non-unital ring R . (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
Assertion pzriprnglem5 I SubRng R

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 1 2 pzriprnglem4 I SubGrp R
4 1 2 pzriprnglem3 x I a x = a 0
5 1 2 pzriprnglem3 y I b y = b 0
6 zringbas = Base ring
7 zringring ring Ring
8 7 a1i a b ring Ring
9 simpl a b a
10 0zd a b 0
11 simpr a b b
12 zringmulr × = ring
13 12 eqcomi ring = ×
14 13 oveqi a ring b = a b
15 zmulcl a b a b
16 14 15 eqeltrid a b a ring b
17 13 oveqi 0 ring 0 = 0 0
18 0cn 0
19 18 mul02i 0 0 = 0
20 17 19 eqtri 0 ring 0 = 0
21 0z 0
22 20 21 eqeltri 0 ring 0
23 22 a1i a b 0 ring 0
24 eqid ring = ring
25 eqid R = R
26 1 6 6 8 8 9 10 11 10 16 23 24 24 25 xpsmul a b a 0 R b 0 = a ring b 0 ring 0
27 c0ex 0 V
28 27 snid 0 0
29 28 a1i a b 0 0
30 20 29 eqeltrid a b 0 ring 0 0
31 16 30 opelxpd a b a ring b 0 ring 0 × 0
32 26 31 eqeltrd a b a 0 R b 0 × 0
33 32 adantr a b y = b 0 x = a 0 a 0 R b 0 × 0
34 oveq12 x = a 0 y = b 0 x R y = a 0 R b 0
35 34 ancoms y = b 0 x = a 0 x R y = a 0 R b 0
36 35 adantl a b y = b 0 x = a 0 x R y = a 0 R b 0
37 2 a1i a b y = b 0 x = a 0 I = × 0
38 33 36 37 3eltr4d a b y = b 0 x = a 0 x R y I
39 38 exp32 a b y = b 0 x = a 0 x R y I
40 39 rexlimdva a b y = b 0 x = a 0 x R y I
41 40 com23 a x = a 0 b y = b 0 x R y I
42 41 rexlimiv a x = a 0 b y = b 0 x R y I
43 42 imp a x = a 0 b y = b 0 x R y I
44 4 5 43 syl2anb x I y I x R y I
45 44 rgen2 x I y I x R y I
46 1 pzriprnglem1 R Rng
47 eqid Base R = Base R
48 47 25 issubrng2 R Rng I SubRng R I SubGrp R x I y I x R y I
49 46 48 ax-mp I SubRng R I SubGrp R x I y I x R y I
50 3 45 49 mpbir2an I SubRng R