Metamath Proof Explorer


Theorem pzriprnglem4

Description: Lemma 4 for pzriprng : I is a subgroup of R . (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
Assertion pzriprnglem4 𝐼 ∈ ( SubGrp ‘ 𝑅 )

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 0z 0 ∈ ℤ
4 c0ex 0 ∈ V
5 4 snss ( 0 ∈ ℤ ↔ { 0 } ⊆ ℤ )
6 3 5 mpbi { 0 } ⊆ ℤ
7 xpss2 ( { 0 } ⊆ ℤ → ( ℤ × { 0 } ) ⊆ ( ℤ × ℤ ) )
8 6 7 ax-mp ( ℤ × { 0 } ) ⊆ ( ℤ × ℤ )
9 1 pzriprnglem2 ( Base ‘ 𝑅 ) = ( ℤ × ℤ )
10 8 2 9 3sstr4i 𝐼 ⊆ ( Base ‘ 𝑅 )
11 3 ne0ii ℤ ≠ ∅
12 4 snnz { 0 } ≠ ∅
13 11 12 pm3.2i ( ℤ ≠ ∅ ∧ { 0 } ≠ ∅ )
14 xpnz ( ( ℤ ≠ ∅ ∧ { 0 } ≠ ∅ ) ↔ ( ℤ × { 0 } ) ≠ ∅ )
15 13 14 mpbi ( ℤ × { 0 } ) ≠ ∅
16 2 15 eqnetri 𝐼 ≠ ∅
17 1 2 pzriprnglem3 ( 𝑥𝐼 ↔ ∃ 𝑎 ∈ ℤ 𝑥 = ⟨ 𝑎 , 0 ⟩ )
18 1 2 pzriprnglem3 ( 𝑦𝐼 ↔ ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ )
19 simpr ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → 𝑥 = ⟨ 𝑎 , 0 ⟩ )
20 19 adantr ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ∧ 𝑏 ∈ ℤ ) → 𝑥 = ⟨ 𝑎 , 0 ⟩ )
21 id ( 𝑦 = ⟨ 𝑏 , 0 ⟩ → 𝑦 = ⟨ 𝑏 , 0 ⟩ )
22 20 21 oveqan12d ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑦 = ⟨ 𝑏 , 0 ⟩ ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( ⟨ 𝑎 , 0 ⟩ ( +g𝑅 ) ⟨ 𝑏 , 0 ⟩ ) )
23 zringbas ℤ = ( Base ‘ ℤring )
24 zringring ring ∈ Ring
25 24 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ℤring ∈ Ring )
26 simpl ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℤ )
27 3 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 0 ∈ ℤ )
28 simpr ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ )
29 zaddcl ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + 𝑏 ) ∈ ℤ )
30 00id ( 0 + 0 ) = 0
31 30 3 eqeltri ( 0 + 0 ) ∈ ℤ
32 31 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 0 + 0 ) ∈ ℤ )
33 zringplusg + = ( +g ‘ ℤring )
34 eqid ( +g𝑅 ) = ( +g𝑅 )
35 1 23 23 25 25 26 27 28 27 29 32 33 33 34 xpsadd ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ⟨ 𝑎 , 0 ⟩ ( +g𝑅 ) ⟨ 𝑏 , 0 ⟩ ) = ⟨ ( 𝑎 + 𝑏 ) , ( 0 + 0 ) ⟩ )
36 4 snid 0 ∈ { 0 }
37 30 36 eqeltri ( 0 + 0 ) ∈ { 0 }
38 2 eleq2i ( ⟨ ( 𝑎 + 𝑏 ) , ( 0 + 0 ) ⟩ ∈ 𝐼 ↔ ⟨ ( 𝑎 + 𝑏 ) , ( 0 + 0 ) ⟩ ∈ ( ℤ × { 0 } ) )
39 opelxp ( ⟨ ( 𝑎 + 𝑏 ) , ( 0 + 0 ) ⟩ ∈ ( ℤ × { 0 } ) ↔ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ( 0 + 0 ) ∈ { 0 } ) )
40 38 39 bitri ( ⟨ ( 𝑎 + 𝑏 ) , ( 0 + 0 ) ⟩ ∈ 𝐼 ↔ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ( 0 + 0 ) ∈ { 0 } ) )
41 29 37 40 sylanblrc ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ⟨ ( 𝑎 + 𝑏 ) , ( 0 + 0 ) ⟩ ∈ 𝐼 )
42 35 41 eqeltrd ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ⟨ 𝑎 , 0 ⟩ ( +g𝑅 ) ⟨ 𝑏 , 0 ⟩ ) ∈ 𝐼 )
43 42 ad4ant13 ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑦 = ⟨ 𝑏 , 0 ⟩ ) → ( ⟨ 𝑎 , 0 ⟩ ( +g𝑅 ) ⟨ 𝑏 , 0 ⟩ ) ∈ 𝐼 )
44 22 43 eqeltrd ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑦 = ⟨ 𝑏 , 0 ⟩ ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 )
45 44 rexlimdva2 ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ) )
46 18 45 biimtrid ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( 𝑦𝐼 → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ) )
47 46 ralrimiv ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 )
48 zringgrp ring ∈ Grp
49 48 a1i ( 𝑎 ∈ ℤ → ℤring ∈ Grp )
50 id ( 𝑎 ∈ ℤ → 𝑎 ∈ ℤ )
51 3 a1i ( 𝑎 ∈ ℤ → 0 ∈ ℤ )
52 eqid ( invg ‘ ℤring ) = ( invg ‘ ℤring )
53 eqid ( invg𝑅 ) = ( invg𝑅 )
54 1 23 23 49 49 50 51 52 52 53 xpsinv ( 𝑎 ∈ ℤ → ( ( invg𝑅 ) ‘ ⟨ 𝑎 , 0 ⟩ ) = ⟨ ( ( invg ‘ ℤring ) ‘ 𝑎 ) , ( ( invg ‘ ℤring ) ‘ 0 ) ⟩ )
55 zringinvg ( 𝑎 ∈ ℤ → - 𝑎 = ( ( invg ‘ ℤring ) ‘ 𝑎 ) )
56 znegcl ( 𝑎 ∈ ℤ → - 𝑎 ∈ ℤ )
57 55 56 eqeltrrd ( 𝑎 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝑎 ) ∈ ℤ )
58 neg0 - 0 = 0
59 58 36 eqeltri - 0 ∈ { 0 }
60 zringinvg ( 0 ∈ ℤ → - 0 = ( ( invg ‘ ℤring ) ‘ 0 ) )
61 60 eleq1d ( 0 ∈ ℤ → ( - 0 ∈ { 0 } ↔ ( ( invg ‘ ℤring ) ‘ 0 ) ∈ { 0 } ) )
62 3 61 mp1i ( 𝑎 ∈ ℤ → ( - 0 ∈ { 0 } ↔ ( ( invg ‘ ℤring ) ‘ 0 ) ∈ { 0 } ) )
63 59 62 mpbii ( 𝑎 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 0 ) ∈ { 0 } )
64 57 63 opelxpd ( 𝑎 ∈ ℤ → ⟨ ( ( invg ‘ ℤring ) ‘ 𝑎 ) , ( ( invg ‘ ℤring ) ‘ 0 ) ⟩ ∈ ( ℤ × { 0 } ) )
65 54 64 eqeltrd ( 𝑎 ∈ ℤ → ( ( invg𝑅 ) ‘ ⟨ 𝑎 , 0 ⟩ ) ∈ ( ℤ × { 0 } ) )
66 65 adantr ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( ( invg𝑅 ) ‘ ⟨ 𝑎 , 0 ⟩ ) ∈ ( ℤ × { 0 } ) )
67 fveq2 ( 𝑥 = ⟨ 𝑎 , 0 ⟩ → ( ( invg𝑅 ) ‘ 𝑥 ) = ( ( invg𝑅 ) ‘ ⟨ 𝑎 , 0 ⟩ ) )
68 67 adantl ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( ( invg𝑅 ) ‘ 𝑥 ) = ( ( invg𝑅 ) ‘ ⟨ 𝑎 , 0 ⟩ ) )
69 2 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → 𝐼 = ( ℤ × { 0 } ) )
70 66 68 69 3eltr4d ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 )
71 47 70 jca ( ( 𝑎 ∈ ℤ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) )
72 71 rexlimiva ( ∃ 𝑎 ∈ ℤ 𝑥 = ⟨ 𝑎 , 0 ⟩ → ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) )
73 17 72 sylbi ( 𝑥𝐼 → ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) )
74 73 rgen 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 )
75 1 pzriprnglem1 𝑅 ∈ Rng
76 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
77 75 76 ax-mp 𝑅 ∈ Grp
78 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
79 78 34 53 issubg2 ( 𝑅 ∈ Grp → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) )
80 77 79 ax-mp ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) )
81 10 16 74 80 mpbir3an 𝐼 ∈ ( SubGrp ‘ 𝑅 )