Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
⊢ 𝑅 = ( ℤring ×s ℤring ) |
2 |
|
pzriprng.i |
⊢ 𝐼 = ( ℤ × { 0 } ) |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
c0ex |
⊢ 0 ∈ V |
5 |
4
|
snss |
⊢ ( 0 ∈ ℤ ↔ { 0 } ⊆ ℤ ) |
6 |
3 5
|
mpbi |
⊢ { 0 } ⊆ ℤ |
7 |
|
xpss2 |
⊢ ( { 0 } ⊆ ℤ → ( ℤ × { 0 } ) ⊆ ( ℤ × ℤ ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ℤ × { 0 } ) ⊆ ( ℤ × ℤ ) |
9 |
1
|
pzriprnglem2 |
⊢ ( Base ‘ 𝑅 ) = ( ℤ × ℤ ) |
10 |
8 2 9
|
3sstr4i |
⊢ 𝐼 ⊆ ( Base ‘ 𝑅 ) |
11 |
3
|
ne0ii |
⊢ ℤ ≠ ∅ |
12 |
4
|
snnz |
⊢ { 0 } ≠ ∅ |
13 |
11 12
|
pm3.2i |
⊢ ( ℤ ≠ ∅ ∧ { 0 } ≠ ∅ ) |
14 |
|
xpnz |
⊢ ( ( ℤ ≠ ∅ ∧ { 0 } ≠ ∅ ) ↔ ( ℤ × { 0 } ) ≠ ∅ ) |
15 |
13 14
|
mpbi |
⊢ ( ℤ × { 0 } ) ≠ ∅ |
16 |
2 15
|
eqnetri |
⊢ 𝐼 ≠ ∅ |
17 |
1 2
|
pzriprnglem3 |
⊢ ( 𝑥 ∈ 𝐼 ↔ ∃ 𝑎 ∈ ℤ 𝑥 = 〈 𝑎 , 0 〉 ) |
18 |
1 2
|
pzriprnglem3 |
⊢ ( 𝑦 ∈ 𝐼 ↔ ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 ) |
19 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → 𝑥 = 〈 𝑎 , 0 〉 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ∧ 𝑏 ∈ ℤ ) → 𝑥 = 〈 𝑎 , 0 〉 ) |
21 |
|
id |
⊢ ( 𝑦 = 〈 𝑏 , 0 〉 → 𝑦 = 〈 𝑏 , 0 〉 ) |
22 |
20 21
|
oveqan12d |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑦 = 〈 𝑏 , 0 〉 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 0 〉 ( +g ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ) |
23 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
24 |
|
zringring |
⊢ ℤring ∈ Ring |
25 |
24
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ℤring ∈ Ring ) |
26 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℤ ) |
27 |
3
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 0 ∈ ℤ ) |
28 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
29 |
|
zaddcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) |
30 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
31 |
30 3
|
eqeltri |
⊢ ( 0 + 0 ) ∈ ℤ |
32 |
31
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 0 + 0 ) ∈ ℤ ) |
33 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
34 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
35 |
1 23 23 25 25 26 27 28 27 29 32 33 33 34
|
xpsadd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 〈 𝑎 , 0 〉 ( +g ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) = 〈 ( 𝑎 + 𝑏 ) , ( 0 + 0 ) 〉 ) |
36 |
4
|
snid |
⊢ 0 ∈ { 0 } |
37 |
30 36
|
eqeltri |
⊢ ( 0 + 0 ) ∈ { 0 } |
38 |
2
|
eleq2i |
⊢ ( 〈 ( 𝑎 + 𝑏 ) , ( 0 + 0 ) 〉 ∈ 𝐼 ↔ 〈 ( 𝑎 + 𝑏 ) , ( 0 + 0 ) 〉 ∈ ( ℤ × { 0 } ) ) |
39 |
|
opelxp |
⊢ ( 〈 ( 𝑎 + 𝑏 ) , ( 0 + 0 ) 〉 ∈ ( ℤ × { 0 } ) ↔ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ( 0 + 0 ) ∈ { 0 } ) ) |
40 |
38 39
|
bitri |
⊢ ( 〈 ( 𝑎 + 𝑏 ) , ( 0 + 0 ) 〉 ∈ 𝐼 ↔ ( ( 𝑎 + 𝑏 ) ∈ ℤ ∧ ( 0 + 0 ) ∈ { 0 } ) ) |
41 |
29 37 40
|
sylanblrc |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 〈 ( 𝑎 + 𝑏 ) , ( 0 + 0 ) 〉 ∈ 𝐼 ) |
42 |
35 41
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 〈 𝑎 , 0 〉 ( +g ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ∈ 𝐼 ) |
43 |
42
|
ad4ant13 |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑦 = 〈 𝑏 , 0 〉 ) → ( 〈 𝑎 , 0 〉 ( +g ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ∈ 𝐼 ) |
44 |
22 43
|
eqeltrd |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑦 = 〈 𝑏 , 0 〉 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
45 |
44
|
rexlimdva2 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) |
46 |
18 45
|
biimtrid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( 𝑦 ∈ 𝐼 → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) |
47 |
46
|
ralrimiv |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
48 |
|
zringgrp |
⊢ ℤring ∈ Grp |
49 |
48
|
a1i |
⊢ ( 𝑎 ∈ ℤ → ℤring ∈ Grp ) |
50 |
|
id |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℤ ) |
51 |
3
|
a1i |
⊢ ( 𝑎 ∈ ℤ → 0 ∈ ℤ ) |
52 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
53 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
54 |
1 23 23 49 49 50 51 52 52 53
|
xpsinv |
⊢ ( 𝑎 ∈ ℤ → ( ( invg ‘ 𝑅 ) ‘ 〈 𝑎 , 0 〉 ) = 〈 ( ( invg ‘ ℤring ) ‘ 𝑎 ) , ( ( invg ‘ ℤring ) ‘ 0 ) 〉 ) |
55 |
|
zringinvg |
⊢ ( 𝑎 ∈ ℤ → - 𝑎 = ( ( invg ‘ ℤring ) ‘ 𝑎 ) ) |
56 |
|
znegcl |
⊢ ( 𝑎 ∈ ℤ → - 𝑎 ∈ ℤ ) |
57 |
55 56
|
eqeltrrd |
⊢ ( 𝑎 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 𝑎 ) ∈ ℤ ) |
58 |
|
neg0 |
⊢ - 0 = 0 |
59 |
58 36
|
eqeltri |
⊢ - 0 ∈ { 0 } |
60 |
|
zringinvg |
⊢ ( 0 ∈ ℤ → - 0 = ( ( invg ‘ ℤring ) ‘ 0 ) ) |
61 |
60
|
eleq1d |
⊢ ( 0 ∈ ℤ → ( - 0 ∈ { 0 } ↔ ( ( invg ‘ ℤring ) ‘ 0 ) ∈ { 0 } ) ) |
62 |
3 61
|
mp1i |
⊢ ( 𝑎 ∈ ℤ → ( - 0 ∈ { 0 } ↔ ( ( invg ‘ ℤring ) ‘ 0 ) ∈ { 0 } ) ) |
63 |
59 62
|
mpbii |
⊢ ( 𝑎 ∈ ℤ → ( ( invg ‘ ℤring ) ‘ 0 ) ∈ { 0 } ) |
64 |
57 63
|
opelxpd |
⊢ ( 𝑎 ∈ ℤ → 〈 ( ( invg ‘ ℤring ) ‘ 𝑎 ) , ( ( invg ‘ ℤring ) ‘ 0 ) 〉 ∈ ( ℤ × { 0 } ) ) |
65 |
54 64
|
eqeltrd |
⊢ ( 𝑎 ∈ ℤ → ( ( invg ‘ 𝑅 ) ‘ 〈 𝑎 , 0 〉 ) ∈ ( ℤ × { 0 } ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( ( invg ‘ 𝑅 ) ‘ 〈 𝑎 , 0 〉 ) ∈ ( ℤ × { 0 } ) ) |
67 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑎 , 0 〉 → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) = ( ( invg ‘ 𝑅 ) ‘ 〈 𝑎 , 0 〉 ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) = ( ( invg ‘ 𝑅 ) ‘ 〈 𝑎 , 0 〉 ) ) |
69 |
2
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → 𝐼 = ( ℤ × { 0 } ) ) |
70 |
66 68 69
|
3eltr4d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) |
71 |
47 70
|
jca |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
72 |
71
|
rexlimiva |
⊢ ( ∃ 𝑎 ∈ ℤ 𝑥 = 〈 𝑎 , 0 〉 → ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
73 |
17 72
|
sylbi |
⊢ ( 𝑥 ∈ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
74 |
73
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) |
75 |
1
|
pzriprnglem1 |
⊢ 𝑅 ∈ Rng |
76 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
77 |
75 76
|
ax-mp |
⊢ 𝑅 ∈ Grp |
78 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
79 |
78 34 53
|
issubg2 |
⊢ ( 𝑅 ∈ Grp → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) ) |
80 |
77 79
|
ax-mp |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) |
81 |
10 16 74 80
|
mpbir3an |
⊢ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) |