Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
⊢ 𝑅 = ( ℤring ×s ℤring ) |
2 |
|
pzriprng.i |
⊢ 𝐼 = ( ℤ × { 0 } ) |
3 |
|
pzriprng.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
1
|
pzriprnglem2 |
⊢ ( Base ‘ 𝑅 ) = ( ℤ × ℤ ) |
5 |
4
|
eleq2i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↔ 𝑥 ∈ ( ℤ × ℤ ) ) |
6 |
|
elxp2 |
⊢ ( 𝑥 ∈ ( ℤ × ℤ ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑥 = 〈 𝑎 , 𝑏 〉 ) |
7 |
5 6
|
bitri |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑥 = 〈 𝑎 , 𝑏 〉 ) |
8 |
1 2
|
pzriprnglem3 |
⊢ ( 𝑦 ∈ 𝐼 ↔ ∃ 𝑐 ∈ ℤ 𝑦 = 〈 𝑐 , 0 〉 ) |
9 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 𝑎 ∈ ℤ ) |
10 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 𝑐 ∈ ℤ ) |
11 |
9 10
|
zmulcld |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑎 · 𝑐 ) ∈ ℤ ) |
12 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
13 |
12
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
15 |
14
|
mul01d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑏 · 0 ) = 0 ) |
16 |
|
ovex |
⊢ ( 𝑏 · 0 ) ∈ V |
17 |
16
|
elsn |
⊢ ( ( 𝑏 · 0 ) ∈ { 0 } ↔ ( 𝑏 · 0 ) = 0 ) |
18 |
15 17
|
sylibr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑏 · 0 ) ∈ { 0 } ) |
19 |
11 18
|
opelxpd |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 0 ) 〉 ∈ ( ℤ × { 0 } ) ) |
20 |
10 9
|
zmulcld |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑐 · 𝑎 ) ∈ ℤ ) |
21 |
14
|
mul02d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 0 · 𝑏 ) = 0 ) |
22 |
|
ovex |
⊢ ( 0 · 𝑏 ) ∈ V |
23 |
22
|
elsn |
⊢ ( ( 0 · 𝑏 ) ∈ { 0 } ↔ ( 0 · 𝑏 ) = 0 ) |
24 |
21 23
|
sylibr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 0 · 𝑏 ) ∈ { 0 } ) |
25 |
20 24
|
opelxpd |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 〈 ( 𝑐 · 𝑎 ) , ( 0 · 𝑏 ) 〉 ∈ ( ℤ × { 0 } ) ) |
26 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
27 |
|
zringring |
⊢ ℤring ∈ Ring |
28 |
27
|
a1i |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ℤring ∈ Ring ) |
29 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
30 |
|
0zd |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → 0 ∈ ℤ ) |
31 |
29 30
|
zmulcld |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑏 · 0 ) ∈ ℤ ) |
32 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
34 |
1 26 26 28 28 9 29 10 30 11 31 32 32 33
|
xpsmul |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) = 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 0 ) 〉 ) |
35 |
34
|
eleq1d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ∈ ( ℤ × { 0 } ) ↔ 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 0 ) 〉 ∈ ( ℤ × { 0 } ) ) ) |
36 |
|
simpl |
⊢ ( ( 𝑐 ∈ ℤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑐 ∈ ℤ ) |
37 |
|
simprl |
⊢ ( ( 𝑐 ∈ ℤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℤ ) |
38 |
36 37
|
zmulcld |
⊢ ( ( 𝑐 ∈ ℤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑐 · 𝑎 ) ∈ ℤ ) |
39 |
38
|
ancoms |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑐 · 𝑎 ) ∈ ℤ ) |
40 |
|
0zd |
⊢ ( ( 𝑐 ∈ ℤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 0 ∈ ℤ ) |
41 |
|
simprr |
⊢ ( ( 𝑐 ∈ ℤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℤ ) |
42 |
40 41
|
zmulcld |
⊢ ( ( 𝑐 ∈ ℤ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 0 · 𝑏 ) ∈ ℤ ) |
43 |
42
|
ancoms |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 0 · 𝑏 ) ∈ ℤ ) |
44 |
1 26 26 28 28 10 30 9 29 39 43 32 32 33
|
xpsmul |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) = 〈 ( 𝑐 · 𝑎 ) , ( 0 · 𝑏 ) 〉 ) |
45 |
44
|
eleq1d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ∈ ( ℤ × { 0 } ) ↔ 〈 ( 𝑐 · 𝑎 ) , ( 0 · 𝑏 ) 〉 ∈ ( ℤ × { 0 } ) ) ) |
46 |
35 45
|
anbi12d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( ( ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ∈ ( ℤ × { 0 } ) ∧ ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ∈ ( ℤ × { 0 } ) ) ↔ ( 〈 ( 𝑎 · 𝑐 ) , ( 𝑏 · 0 ) 〉 ∈ ( ℤ × { 0 } ) ∧ 〈 ( 𝑐 · 𝑎 ) , ( 0 · 𝑏 ) 〉 ∈ ( ℤ × { 0 } ) ) ) ) |
47 |
19 25 46
|
mpbir2and |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ∈ ( ℤ × { 0 } ) ∧ ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ∈ ( ℤ × { 0 } ) ) ) |
48 |
47
|
adantr |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ∈ ( ℤ × { 0 } ) ∧ ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ∈ ( ℤ × { 0 } ) ) ) |
49 |
|
oveq12 |
⊢ ( ( 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ 𝑦 = 〈 𝑐 , 0 〉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ) |
50 |
49
|
ancoms |
⊢ ( ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ) |
51 |
50
|
adantl |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ) |
52 |
2
|
a1i |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → 𝐼 = ( ℤ × { 0 } ) ) |
53 |
51 52
|
eleq12d |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ↔ ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ∈ ( ℤ × { 0 } ) ) ) |
54 |
|
oveq12 |
⊢ ( ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ) |
55 |
54
|
adantl |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ) |
56 |
55 52
|
eleq12d |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ↔ ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ∈ ( ℤ × { 0 } ) ) ) |
57 |
53 56
|
anbi12d |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ↔ ( ( 〈 𝑎 , 𝑏 〉 ( .r ‘ 𝑅 ) 〈 𝑐 , 0 〉 ) ∈ ( ℤ × { 0 } ) ∧ ( 〈 𝑐 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑎 , 𝑏 〉 ) ∈ ( ℤ × { 0 } ) ) ) ) |
58 |
48 57
|
mpbird |
⊢ ( ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑐 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 𝑏 〉 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) |
59 |
58
|
exp32 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ 𝑐 ∈ ℤ ) → ( 𝑦 = 〈 𝑐 , 0 〉 → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) ) |
60 |
59
|
rexlimdva |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ∃ 𝑐 ∈ ℤ 𝑦 = 〈 𝑐 , 0 〉 → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) ) |
61 |
60
|
com23 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑐 ∈ ℤ 𝑦 = 〈 𝑐 , 0 〉 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) ) |
62 |
61
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑐 ∈ ℤ 𝑦 = 〈 𝑐 , 0 〉 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) |
63 |
62
|
imp |
⊢ ( ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑥 = 〈 𝑎 , 𝑏 〉 ∧ ∃ 𝑐 ∈ ℤ 𝑦 = 〈 𝑐 , 0 〉 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) |
64 |
7 8 63
|
syl2anb |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) |
65 |
64
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) |
66 |
1
|
pzriprnglem1 |
⊢ 𝑅 ∈ Rng |
67 |
1 2
|
pzriprnglem4 |
⊢ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) |
68 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
69 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
70 |
68 69 33
|
df2idl2rng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) ) |
71 |
66 67 70
|
mp2an |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝐼 ) ) |
72 |
65 71
|
mpbir |
⊢ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) |