Metamath Proof Explorer


Theorem pzriprnglem9

Description: Lemma 9 for pzriprng : The ring unity of the ring J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
pzriprng.1 1 = ( 1r𝐽 )
Assertion pzriprnglem9 1 = ⟨ 1 , 0 ⟩

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
4 pzriprng.1 1 = ( 1r𝐽 )
5 1z 1 ∈ ℤ
6 c0ex 0 ∈ V
7 6 snid 0 ∈ { 0 }
8 2 eleq2i ( ⟨ 1 , 0 ⟩ ∈ 𝐼 ↔ ⟨ 1 , 0 ⟩ ∈ ( ℤ × { 0 } ) )
9 opelxp ( ⟨ 1 , 0 ⟩ ∈ ( ℤ × { 0 } ) ↔ ( 1 ∈ ℤ ∧ 0 ∈ { 0 } ) )
10 8 9 bitri ( ⟨ 1 , 0 ⟩ ∈ 𝐼 ↔ ( 1 ∈ ℤ ∧ 0 ∈ { 0 } ) )
11 5 7 10 mpbir2an ⟨ 1 , 0 ⟩ ∈ 𝐼
12 1 2 3 pzriprnglem6 ( 𝑥𝐼 → ( ( ⟨ 1 , 0 ⟩ ( .r𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝐽 ) ⟨ 1 , 0 ⟩ ) = 𝑥 ) )
13 12 rgen 𝑥𝐼 ( ( ⟨ 1 , 0 ⟩ ( .r𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝐽 ) ⟨ 1 , 0 ⟩ ) = 𝑥 )
14 11 13 pm3.2i ( ⟨ 1 , 0 ⟩ ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( ( ⟨ 1 , 0 ⟩ ( .r𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝐽 ) ⟨ 1 , 0 ⟩ ) = 𝑥 ) )
15 1 2 3 pzriprnglem7 𝐽 ∈ Ring
16 1 2 pzriprnglem5 𝐼 ∈ ( SubRng ‘ 𝑅 )
17 3 subrngbas ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 = ( Base ‘ 𝐽 ) )
18 16 17 ax-mp 𝐼 = ( Base ‘ 𝐽 )
19 eqid ( .r𝐽 ) = ( .r𝐽 )
20 18 19 4 isringid ( 𝐽 ∈ Ring → ( ( ⟨ 1 , 0 ⟩ ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( ( ⟨ 1 , 0 ⟩ ( .r𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝐽 ) ⟨ 1 , 0 ⟩ ) = 𝑥 ) ) ↔ 1 = ⟨ 1 , 0 ⟩ ) )
21 15 20 ax-mp ( ( ⟨ 1 , 0 ⟩ ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( ( ⟨ 1 , 0 ⟩ ( .r𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝐽 ) ⟨ 1 , 0 ⟩ ) = 𝑥 ) ) ↔ 1 = ⟨ 1 , 0 ⟩ )
22 14 21 mpbi 1 = ⟨ 1 , 0 ⟩