Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
|
pzriprng.1 |
|- .1. = ( 1r ` J ) |
5 |
|
1z |
|- 1 e. ZZ |
6 |
|
c0ex |
|- 0 e. _V |
7 |
6
|
snid |
|- 0 e. { 0 } |
8 |
2
|
eleq2i |
|- ( <. 1 , 0 >. e. I <-> <. 1 , 0 >. e. ( ZZ X. { 0 } ) ) |
9 |
|
opelxp |
|- ( <. 1 , 0 >. e. ( ZZ X. { 0 } ) <-> ( 1 e. ZZ /\ 0 e. { 0 } ) ) |
10 |
8 9
|
bitri |
|- ( <. 1 , 0 >. e. I <-> ( 1 e. ZZ /\ 0 e. { 0 } ) ) |
11 |
5 7 10
|
mpbir2an |
|- <. 1 , 0 >. e. I |
12 |
1 2 3
|
pzriprnglem6 |
|- ( x e. I -> ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) |
13 |
12
|
rgen |
|- A. x e. I ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) |
14 |
11 13
|
pm3.2i |
|- ( <. 1 , 0 >. e. I /\ A. x e. I ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) |
15 |
1 2 3
|
pzriprnglem7 |
|- J e. Ring |
16 |
1 2
|
pzriprnglem5 |
|- I e. ( SubRng ` R ) |
17 |
3
|
subrngbas |
|- ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) |
18 |
16 17
|
ax-mp |
|- I = ( Base ` J ) |
19 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
20 |
18 19 4
|
isringid |
|- ( J e. Ring -> ( ( <. 1 , 0 >. e. I /\ A. x e. I ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) <-> .1. = <. 1 , 0 >. ) ) |
21 |
15 20
|
ax-mp |
|- ( ( <. 1 , 0 >. e. I /\ A. x e. I ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) <-> .1. = <. 1 , 0 >. ) |
22 |
14 21
|
mpbi |
|- .1. = <. 1 , 0 >. |