Metamath Proof Explorer


Theorem pzriprngALT

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital because it has the two-sided ideal ( ZZ X. { 0 } ) , which is unital, and the quotient of the ring and the ideal is also unital (using ring2idlqusb ). (Contributed by AV, 23-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pzriprngALT ( ℤring ×sring ) ∈ Ring

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑖 = ( ℤ × { 0 } ) → ( ( ℤring ×sring ) ↾s 𝑖 ) = ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) )
2 1 eleq1d ( 𝑖 = ( ℤ × { 0 } ) → ( ( ( ℤring ×sring ) ↾s 𝑖 ) ∈ Ring ↔ ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ) )
3 oveq2 ( 𝑖 = ( ℤ × { 0 } ) → ( ( ℤring ×sring ) ~QG 𝑖 ) = ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) )
4 3 oveq2d ( 𝑖 = ( ℤ × { 0 } ) → ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) = ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) ) )
5 4 eleq1d ( 𝑖 = ( ℤ × { 0 } ) → ( ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) ∈ Ring ↔ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) )
6 2 5 anbi12d ( 𝑖 = ( ℤ × { 0 } ) → ( ( ( ( ℤring ×sring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) ∈ Ring ) ↔ ( ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) ) )
7 eqid ( ℤring ×sring ) = ( ℤring ×sring )
8 eqid ( ℤ × { 0 } ) = ( ℤ × { 0 } )
9 eqid ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) = ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) )
10 7 8 9 pzriprnglem8 ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×sring ) )
11 10 a1i ( ⊤ → ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×sring ) ) )
12 7 8 9 pzriprnglem7 ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring
13 12 a1i ( ⊤ → ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring )
14 eqid ( 1r ‘ ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) ) = ( 1r ‘ ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) )
15 eqid ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) = ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) )
16 eqid ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) ) = ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) )
17 7 8 9 14 15 16 pzriprnglem13 ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring
18 13 17 jctir ( ⊤ → ( ( ( ℤring ×sring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) )
19 6 11 18 rspcedvdw ( ⊤ → ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×sring ) ) ( ( ( ℤring ×sring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) ∈ Ring ) )
20 19 mptru 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×sring ) ) ( ( ( ℤring ×sring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) ∈ Ring )
21 7 pzriprnglem1 ( ℤring ×sring ) ∈ Rng
22 ring2idlqusb ( ( ℤring ×sring ) ∈ Rng → ( ( ℤring ×sring ) ∈ Ring ↔ ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×sring ) ) ( ( ( ℤring ×sring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) ∈ Ring ) ) )
23 21 22 ax-mp ( ( ℤring ×sring ) ∈ Ring ↔ ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×sring ) ) ( ( ( ℤring ×sring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×sring ) /s ( ( ℤring ×sring ) ~QG 𝑖 ) ) ∈ Ring ) )
24 20 23 mpbir ( ℤring ×sring ) ∈ Ring