Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑖 = ( ℤ × { 0 } ) → ( ( ℤring ×s ℤring ) ↾s 𝑖 ) = ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑖 = ( ℤ × { 0 } ) → ( ( ( ℤring ×s ℤring ) ↾s 𝑖 ) ∈ Ring ↔ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ) ) |
3 |
|
oveq2 |
⊢ ( 𝑖 = ( ℤ × { 0 } ) → ( ( ℤring ×s ℤring ) ~QG 𝑖 ) = ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑖 = ( ℤ × { 0 } ) → ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) = ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑖 = ( ℤ × { 0 } ) → ( ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) ∈ Ring ↔ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) ) |
6 |
2 5
|
anbi12d |
⊢ ( 𝑖 = ( ℤ × { 0 } ) → ( ( ( ( ℤring ×s ℤring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) ∈ Ring ) ↔ ( ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) ) ) |
7 |
|
eqid |
⊢ ( ℤring ×s ℤring ) = ( ℤring ×s ℤring ) |
8 |
|
eqid |
⊢ ( ℤ × { 0 } ) = ( ℤ × { 0 } ) |
9 |
|
eqid |
⊢ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) = ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) |
10 |
7 8 9
|
pzriprnglem8 |
⊢ ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) |
11 |
10
|
a1i |
⊢ ( ⊤ → ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ) |
12 |
7 8 9
|
pzriprnglem7 |
⊢ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring |
13 |
12
|
a1i |
⊢ ( ⊤ → ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ) |
14 |
|
eqid |
⊢ ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) = ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) |
15 |
|
eqid |
⊢ ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) = ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) |
16 |
|
eqid |
⊢ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) = ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) |
17 |
7 8 9 14 15 16
|
pzriprnglem13 |
⊢ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring |
18 |
13 17
|
jctir |
⊢ ( ⊤ → ( ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) ) |
19 |
6 11 18
|
rspcedvdw |
⊢ ( ⊤ → ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ( ( ( ℤring ×s ℤring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) ∈ Ring ) ) |
20 |
19
|
mptru |
⊢ ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ( ( ( ℤring ×s ℤring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) ∈ Ring ) |
21 |
7
|
pzriprnglem1 |
⊢ ( ℤring ×s ℤring ) ∈ Rng |
22 |
|
ring2idlqusb |
⊢ ( ( ℤring ×s ℤring ) ∈ Rng → ( ( ℤring ×s ℤring ) ∈ Ring ↔ ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ( ( ( ℤring ×s ℤring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) ∈ Ring ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( ( ℤring ×s ℤring ) ∈ Ring ↔ ∃ 𝑖 ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ( ( ( ℤring ×s ℤring ) ↾s 𝑖 ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG 𝑖 ) ) ∈ Ring ) ) |
24 |
20 23
|
mpbir |
⊢ ( ℤring ×s ℤring ) ∈ Ring |