Metamath Proof Explorer


Theorem pzriprnglem13

Description: Lemma 13 for pzriprng : Q is a unital ring. (Contributed by AV, 23-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
pzriprng.1 1 = ( 1r𝐽 )
pzriprng.g = ( 𝑅 ~QG 𝐼 )
pzriprng.q 𝑄 = ( 𝑅 /s )
Assertion pzriprnglem13 𝑄 ∈ Ring

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
4 pzriprng.1 1 = ( 1r𝐽 )
5 pzriprng.g = ( 𝑅 ~QG 𝐼 )
6 pzriprng.q 𝑄 = ( 𝑅 /s )
7 1 pzriprnglem1 𝑅 ∈ Rng
8 1 2 3 pzriprnglem8 𝐼 ∈ ( 2Ideal ‘ 𝑅 )
9 1 2 pzriprnglem4 𝐼 ∈ ( SubGrp ‘ 𝑅 )
10 5 oveq2i ( 𝑅 /s ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
11 6 10 eqtri 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
12 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
13 11 12 qus2idrng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑄 ∈ Rng )
14 7 8 9 13 mp3an 𝑄 ∈ Rng
15 1z 1 ∈ ℤ
16 zex ℤ ∈ V
17 snex { 1 } ∈ V
18 16 17 xpex ( ℤ × { 1 } ) ∈ V
19 18 snid ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) }
20 sneq ( 𝑦 = 1 → { 𝑦 } = { 1 } )
21 20 xpeq2d ( 𝑦 = 1 → ( ℤ × { 𝑦 } ) = ( ℤ × { 1 } ) )
22 21 sneqd ( 𝑦 = 1 → { ( ℤ × { 𝑦 } ) } = { ( ℤ × { 1 } ) } )
23 22 eleq2d ( 𝑦 = 1 → ( ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ↔ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) )
24 23 rspcev ( ( 1 ∈ ℤ ∧ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) → ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } )
25 15 19 24 mp2an 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) }
26 eliun ( ( ℤ × { 1 } ) ∈ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } ↔ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } )
27 25 26 mpbir ( ℤ × { 1 } ) ∈ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) }
28 1 2 3 4 5 6 pzriprnglem11 ( Base ‘ 𝑄 ) = 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) }
29 27 28 eleqtrri ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 )
30 oveq1 ( 𝑖 = ( ℤ × { 1 } ) → ( 𝑖 ( .r𝑄 ) 𝑥 ) = ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) )
31 30 eqeq1d ( 𝑖 = ( ℤ × { 1 } ) → ( ( 𝑖 ( .r𝑄 ) 𝑥 ) = 𝑥 ↔ ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ) )
32 31 ovanraleqv ( 𝑖 = ( ℤ × { 1 } ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) )
33 id ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) )
34 1 2 3 4 5 6 pzriprnglem12 ( 𝑥 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) )
35 34 a1i ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ( 𝑥 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) )
36 35 ralrimiv ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) )
37 32 33 36 rspcedvdw ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑄 ) ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) 𝑖 ) = 𝑥 ) )
38 29 37 ax-mp 𝑖 ∈ ( Base ‘ 𝑄 ) ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) 𝑖 ) = 𝑥 )
39 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
40 eqid ( .r𝑄 ) = ( .r𝑄 )
41 39 40 isringrng ( 𝑄 ∈ Ring ↔ ( 𝑄 ∈ Rng ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑄 ) ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) 𝑖 ) = 𝑥 ) ) )
42 14 38 41 mpbir2an 𝑄 ∈ Ring