Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
⊢ 𝑅 = ( ℤring ×s ℤring ) |
2 |
|
pzriprng.i |
⊢ 𝐼 = ( ℤ × { 0 } ) |
3 |
|
pzriprng.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
pzriprng.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
5 |
|
pzriprng.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
6 |
|
pzriprng.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
7 |
1
|
pzriprnglem1 |
⊢ 𝑅 ∈ Rng |
8 |
1 2 3
|
pzriprnglem8 |
⊢ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) |
9 |
1 2
|
pzriprnglem4 |
⊢ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) |
10 |
5
|
oveq2i |
⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
11 |
6 10
|
eqtri |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
12 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
13 |
11 12
|
qus2idrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑄 ∈ Rng ) |
14 |
7 8 9 13
|
mp3an |
⊢ 𝑄 ∈ Rng |
15 |
|
1z |
⊢ 1 ∈ ℤ |
16 |
|
zex |
⊢ ℤ ∈ V |
17 |
|
snex |
⊢ { 1 } ∈ V |
18 |
16 17
|
xpex |
⊢ ( ℤ × { 1 } ) ∈ V |
19 |
18
|
snid |
⊢ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } |
20 |
|
sneq |
⊢ ( 𝑦 = 1 → { 𝑦 } = { 1 } ) |
21 |
20
|
xpeq2d |
⊢ ( 𝑦 = 1 → ( ℤ × { 𝑦 } ) = ( ℤ × { 1 } ) ) |
22 |
21
|
sneqd |
⊢ ( 𝑦 = 1 → { ( ℤ × { 𝑦 } ) } = { ( ℤ × { 1 } ) } ) |
23 |
22
|
eleq2d |
⊢ ( 𝑦 = 1 → ( ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ↔ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) ) |
24 |
23
|
rspcev |
⊢ ( ( 1 ∈ ℤ ∧ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) → ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ) |
25 |
15 19 24
|
mp2an |
⊢ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } |
26 |
|
eliun |
⊢ ( ( ℤ × { 1 } ) ∈ ∪ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } ↔ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ) |
27 |
25 26
|
mpbir |
⊢ ( ℤ × { 1 } ) ∈ ∪ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } |
28 |
1 2 3 4 5 6
|
pzriprnglem11 |
⊢ ( Base ‘ 𝑄 ) = ∪ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } |
29 |
27 28
|
eleqtrri |
⊢ ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) |
30 |
|
oveq1 |
⊢ ( 𝑖 = ( ℤ × { 1 } ) → ( 𝑖 ( .r ‘ 𝑄 ) 𝑥 ) = ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑖 = ( ℤ × { 1 } ) → ( ( 𝑖 ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ↔ ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ) ) |
32 |
31
|
ovanraleqv |
⊢ ( 𝑖 = ( ℤ × { 1 } ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) ) |
33 |
|
id |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ) |
34 |
1 2 3 4 5 6
|
pzriprnglem12 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) |
35 |
34
|
a1i |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ( 𝑥 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) |
37 |
32 33 36
|
rspcedvdw |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) → ∃ 𝑖 ∈ ( Base ‘ 𝑄 ) ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) 𝑖 ) = 𝑥 ) ) |
38 |
29 37
|
ax-mp |
⊢ ∃ 𝑖 ∈ ( Base ‘ 𝑄 ) ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) 𝑖 ) = 𝑥 ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
40 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
41 |
39 40
|
isringrng |
⊢ ( 𝑄 ∈ Ring ↔ ( 𝑄 ∈ Rng ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑄 ) ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( 𝑖 ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) 𝑖 ) = 𝑥 ) ) ) |
42 |
14 38 41
|
mpbir2an |
⊢ 𝑄 ∈ Ring |