Metamath Proof Explorer


Theorem pzriprnglem12

Description: Lemma 12 for pzriprng : Q has a ring unity. (Contributed by AV, 23-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
pzriprng.1 1 = ( 1r𝐽 )
pzriprng.g = ( 𝑅 ~QG 𝐼 )
pzriprng.q 𝑄 = ( 𝑅 /s )
Assertion pzriprnglem12 ( 𝑋 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
4 pzriprng.1 1 = ( 1r𝐽 )
5 pzriprng.g = ( 𝑅 ~QG 𝐼 )
6 pzriprng.q 𝑄 = ( 𝑅 /s )
7 1 2 3 4 5 6 pzriprnglem11 ( Base ‘ 𝑄 ) = 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) }
8 7 eleq2i ( 𝑋 ∈ ( Base ‘ 𝑄 ) ↔ 𝑋 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } )
9 eliun ( 𝑋 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } ↔ ∃ 𝑦 ∈ ℤ 𝑋 ∈ { ( ℤ × { 𝑦 } ) } )
10 8 9 bitri ( 𝑋 ∈ ( Base ‘ 𝑄 ) ↔ ∃ 𝑦 ∈ ℤ 𝑋 ∈ { ( ℤ × { 𝑦 } ) } )
11 elsni ( 𝑋 ∈ { ( ℤ × { 𝑦 } ) } → 𝑋 = ( ℤ × { 𝑦 } ) )
12 1z 1 ∈ ℤ
13 1 2 3 4 5 pzriprnglem10 ( ( 1 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → [ ⟨ 1 , 𝑦 ⟩ ] = ( ℤ × { 𝑦 } ) )
14 12 13 mpan ( 𝑦 ∈ ℤ → [ ⟨ 1 , 𝑦 ⟩ ] = ( ℤ × { 𝑦 } ) )
15 14 eqcomd ( 𝑦 ∈ ℤ → ( ℤ × { 𝑦 } ) = [ ⟨ 1 , 𝑦 ⟩ ] )
16 15 eqeq2d ( 𝑦 ∈ ℤ → ( 𝑋 = ( ℤ × { 𝑦 } ) ↔ 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] ) )
17 1 pzriprnglem1 𝑅 ∈ Rng
18 17 a1i ( 𝑦 ∈ ℤ → 𝑅 ∈ Rng )
19 1 2 3 pzriprnglem8 𝐼 ∈ ( 2Ideal ‘ 𝑅 )
20 19 a1i ( 𝑦 ∈ ℤ → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
21 1 2 pzriprnglem4 𝐼 ∈ ( SubGrp ‘ 𝑅 )
22 21 a1i ( 𝑦 ∈ ℤ → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
23 12 a1i ( 𝑦 ∈ ℤ → 1 ∈ ℤ )
24 23 23 opelxpd ( 𝑦 ∈ ℤ → ⟨ 1 , 1 ⟩ ∈ ( ℤ × ℤ ) )
25 id ( 𝑦 ∈ ℤ → 𝑦 ∈ ℤ )
26 23 25 opelxpd ( 𝑦 ∈ ℤ → ⟨ 1 , 𝑦 ⟩ ∈ ( ℤ × ℤ ) )
27 1 pzriprnglem2 ( Base ‘ 𝑅 ) = ( ℤ × ℤ )
28 27 eqcomi ( ℤ × ℤ ) = ( Base ‘ 𝑅 )
29 eqid ( .r𝑅 ) = ( .r𝑅 )
30 eqid ( .r𝑄 ) = ( .r𝑄 )
31 5 6 28 29 30 qusmulrng ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( ⟨ 1 , 1 ⟩ ∈ ( ℤ × ℤ ) ∧ ⟨ 1 , 𝑦 ⟩ ∈ ( ℤ × ℤ ) ) ) → ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) = [ ( ⟨ 1 , 1 ⟩ ( .r𝑅 ) ⟨ 1 , 𝑦 ⟩ ) ] )
32 18 20 22 24 26 31 syl32anc ( 𝑦 ∈ ℤ → ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) = [ ( ⟨ 1 , 1 ⟩ ( .r𝑅 ) ⟨ 1 , 𝑦 ⟩ ) ] )
33 zringbas ℤ = ( Base ‘ ℤring )
34 zringring ring ∈ Ring
35 34 a1i ( 𝑦 ∈ ℤ → ℤring ∈ Ring )
36 23 23 zmulcld ( 𝑦 ∈ ℤ → ( 1 · 1 ) ∈ ℤ )
37 23 25 zmulcld ( 𝑦 ∈ ℤ → ( 1 · 𝑦 ) ∈ ℤ )
38 zringmulr · = ( .r ‘ ℤring )
39 1 33 33 35 35 23 23 23 25 36 37 38 38 29 xpsmul ( 𝑦 ∈ ℤ → ( ⟨ 1 , 1 ⟩ ( .r𝑅 ) ⟨ 1 , 𝑦 ⟩ ) = ⟨ ( 1 · 1 ) , ( 1 · 𝑦 ) ⟩ )
40 1cnd ( 𝑦 ∈ ℤ → 1 ∈ ℂ )
41 40 mulridd ( 𝑦 ∈ ℤ → ( 1 · 1 ) = 1 )
42 zcn ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ )
43 42 mullidd ( 𝑦 ∈ ℤ → ( 1 · 𝑦 ) = 𝑦 )
44 41 43 opeq12d ( 𝑦 ∈ ℤ → ⟨ ( 1 · 1 ) , ( 1 · 𝑦 ) ⟩ = ⟨ 1 , 𝑦 ⟩ )
45 39 44 eqtrd ( 𝑦 ∈ ℤ → ( ⟨ 1 , 1 ⟩ ( .r𝑅 ) ⟨ 1 , 𝑦 ⟩ ) = ⟨ 1 , 𝑦 ⟩ )
46 45 eceq1d ( 𝑦 ∈ ℤ → [ ( ⟨ 1 , 1 ⟩ ( .r𝑅 ) ⟨ 1 , 𝑦 ⟩ ) ] = [ ⟨ 1 , 𝑦 ⟩ ] )
47 32 46 eqtrd ( 𝑦 ∈ ℤ → ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] )
48 5 6 28 29 30 qusmulrng ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( ⟨ 1 , 𝑦 ⟩ ∈ ( ℤ × ℤ ) ∧ ⟨ 1 , 1 ⟩ ∈ ( ℤ × ℤ ) ) ) → ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) = [ ( ⟨ 1 , 𝑦 ⟩ ( .r𝑅 ) ⟨ 1 , 1 ⟩ ) ] )
49 18 20 22 26 24 48 syl32anc ( 𝑦 ∈ ℤ → ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) = [ ( ⟨ 1 , 𝑦 ⟩ ( .r𝑅 ) ⟨ 1 , 1 ⟩ ) ] )
50 25 23 zmulcld ( 𝑦 ∈ ℤ → ( 𝑦 · 1 ) ∈ ℤ )
51 1 33 33 35 35 23 25 23 23 36 50 38 38 29 xpsmul ( 𝑦 ∈ ℤ → ( ⟨ 1 , 𝑦 ⟩ ( .r𝑅 ) ⟨ 1 , 1 ⟩ ) = ⟨ ( 1 · 1 ) , ( 𝑦 · 1 ) ⟩ )
52 42 mulridd ( 𝑦 ∈ ℤ → ( 𝑦 · 1 ) = 𝑦 )
53 41 52 opeq12d ( 𝑦 ∈ ℤ → ⟨ ( 1 · 1 ) , ( 𝑦 · 1 ) ⟩ = ⟨ 1 , 𝑦 ⟩ )
54 51 53 eqtrd ( 𝑦 ∈ ℤ → ( ⟨ 1 , 𝑦 ⟩ ( .r𝑅 ) ⟨ 1 , 1 ⟩ ) = ⟨ 1 , 𝑦 ⟩ )
55 54 eceq1d ( 𝑦 ∈ ℤ → [ ( ⟨ 1 , 𝑦 ⟩ ( .r𝑅 ) ⟨ 1 , 1 ⟩ ) ] = [ ⟨ 1 , 𝑦 ⟩ ] )
56 49 55 eqtrd ( 𝑦 ∈ ℤ → ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] )
57 47 56 jca ( 𝑦 ∈ ℤ → ( ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] ∧ ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] ) )
58 1 2 3 4 5 pzriprnglem10 ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ) → [ ⟨ 1 , 1 ⟩ ] = ( ℤ × { 1 } ) )
59 12 12 58 mp2an [ ⟨ 1 , 1 ⟩ ] = ( ℤ × { 1 } )
60 59 eqcomi ( ℤ × { 1 } ) = [ ⟨ 1 , 1 ⟩ ]
61 60 a1i ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( ℤ × { 1 } ) = [ ⟨ 1 , 1 ⟩ ] )
62 id ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] )
63 61 62 oveq12d ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) )
64 63 62 eqeq12d ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ↔ ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] ) )
65 62 61 oveq12d ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) )
66 65 62 eqeq12d ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ↔ ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] ) )
67 64 66 anbi12d ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) ↔ ( ( [ ⟨ 1 , 1 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 𝑦 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] ∧ ( [ ⟨ 1 , 𝑦 ⟩ ] ( .r𝑄 ) [ ⟨ 1 , 1 ⟩ ] ) = [ ⟨ 1 , 𝑦 ⟩ ] ) ) )
68 57 67 syl5ibrcom ( 𝑦 ∈ ℤ → ( 𝑋 = [ ⟨ 1 , 𝑦 ⟩ ] → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) ) )
69 16 68 sylbid ( 𝑦 ∈ ℤ → ( 𝑋 = ( ℤ × { 𝑦 } ) → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) ) )
70 11 69 syl5 ( 𝑦 ∈ ℤ → ( 𝑋 ∈ { ( ℤ × { 𝑦 } ) } → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) ) )
71 70 rexlimiv ( ∃ 𝑦 ∈ ℤ 𝑋 ∈ { ( ℤ × { 𝑦 } ) } → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) )
72 10 71 sylbi ( 𝑋 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑋 ) = 𝑋 ∧ ( 𝑋 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑋 ) )