| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
| 2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
| 3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
| 4 |
|
pzriprng.1 |
|- .1. = ( 1r ` J ) |
| 5 |
|
pzriprng.g |
|- .~ = ( R ~QG I ) |
| 6 |
|
pzriprng.q |
|- Q = ( R /s .~ ) |
| 7 |
1 2 3 4 5 6
|
pzriprnglem11 |
|- ( Base ` Q ) = U_ y e. ZZ { ( ZZ X. { y } ) } |
| 8 |
7
|
eleq2i |
|- ( X e. ( Base ` Q ) <-> X e. U_ y e. ZZ { ( ZZ X. { y } ) } ) |
| 9 |
|
eliun |
|- ( X e. U_ y e. ZZ { ( ZZ X. { y } ) } <-> E. y e. ZZ X e. { ( ZZ X. { y } ) } ) |
| 10 |
8 9
|
bitri |
|- ( X e. ( Base ` Q ) <-> E. y e. ZZ X e. { ( ZZ X. { y } ) } ) |
| 11 |
|
elsni |
|- ( X e. { ( ZZ X. { y } ) } -> X = ( ZZ X. { y } ) ) |
| 12 |
|
1z |
|- 1 e. ZZ |
| 13 |
1 2 3 4 5
|
pzriprnglem10 |
|- ( ( 1 e. ZZ /\ y e. ZZ ) -> [ <. 1 , y >. ] .~ = ( ZZ X. { y } ) ) |
| 14 |
12 13
|
mpan |
|- ( y e. ZZ -> [ <. 1 , y >. ] .~ = ( ZZ X. { y } ) ) |
| 15 |
14
|
eqcomd |
|- ( y e. ZZ -> ( ZZ X. { y } ) = [ <. 1 , y >. ] .~ ) |
| 16 |
15
|
eqeq2d |
|- ( y e. ZZ -> ( X = ( ZZ X. { y } ) <-> X = [ <. 1 , y >. ] .~ ) ) |
| 17 |
1
|
pzriprnglem1 |
|- R e. Rng |
| 18 |
17
|
a1i |
|- ( y e. ZZ -> R e. Rng ) |
| 19 |
1 2 3
|
pzriprnglem8 |
|- I e. ( 2Ideal ` R ) |
| 20 |
19
|
a1i |
|- ( y e. ZZ -> I e. ( 2Ideal ` R ) ) |
| 21 |
1 2
|
pzriprnglem4 |
|- I e. ( SubGrp ` R ) |
| 22 |
21
|
a1i |
|- ( y e. ZZ -> I e. ( SubGrp ` R ) ) |
| 23 |
12
|
a1i |
|- ( y e. ZZ -> 1 e. ZZ ) |
| 24 |
23 23
|
opelxpd |
|- ( y e. ZZ -> <. 1 , 1 >. e. ( ZZ X. ZZ ) ) |
| 25 |
|
id |
|- ( y e. ZZ -> y e. ZZ ) |
| 26 |
23 25
|
opelxpd |
|- ( y e. ZZ -> <. 1 , y >. e. ( ZZ X. ZZ ) ) |
| 27 |
1
|
pzriprnglem2 |
|- ( Base ` R ) = ( ZZ X. ZZ ) |
| 28 |
27
|
eqcomi |
|- ( ZZ X. ZZ ) = ( Base ` R ) |
| 29 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 30 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 31 |
5 6 28 29 30
|
qusmulrng |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) /\ ( <. 1 , 1 >. e. ( ZZ X. ZZ ) /\ <. 1 , y >. e. ( ZZ X. ZZ ) ) ) -> ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) = [ ( <. 1 , 1 >. ( .r ` R ) <. 1 , y >. ) ] .~ ) |
| 32 |
18 20 22 24 26 31
|
syl32anc |
|- ( y e. ZZ -> ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) = [ ( <. 1 , 1 >. ( .r ` R ) <. 1 , y >. ) ] .~ ) |
| 33 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 34 |
|
zringring |
|- ZZring e. Ring |
| 35 |
34
|
a1i |
|- ( y e. ZZ -> ZZring e. Ring ) |
| 36 |
23 23
|
zmulcld |
|- ( y e. ZZ -> ( 1 x. 1 ) e. ZZ ) |
| 37 |
23 25
|
zmulcld |
|- ( y e. ZZ -> ( 1 x. y ) e. ZZ ) |
| 38 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
| 39 |
1 33 33 35 35 23 23 23 25 36 37 38 38 29
|
xpsmul |
|- ( y e. ZZ -> ( <. 1 , 1 >. ( .r ` R ) <. 1 , y >. ) = <. ( 1 x. 1 ) , ( 1 x. y ) >. ) |
| 40 |
|
1cnd |
|- ( y e. ZZ -> 1 e. CC ) |
| 41 |
40
|
mulridd |
|- ( y e. ZZ -> ( 1 x. 1 ) = 1 ) |
| 42 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 43 |
42
|
mullidd |
|- ( y e. ZZ -> ( 1 x. y ) = y ) |
| 44 |
41 43
|
opeq12d |
|- ( y e. ZZ -> <. ( 1 x. 1 ) , ( 1 x. y ) >. = <. 1 , y >. ) |
| 45 |
39 44
|
eqtrd |
|- ( y e. ZZ -> ( <. 1 , 1 >. ( .r ` R ) <. 1 , y >. ) = <. 1 , y >. ) |
| 46 |
45
|
eceq1d |
|- ( y e. ZZ -> [ ( <. 1 , 1 >. ( .r ` R ) <. 1 , y >. ) ] .~ = [ <. 1 , y >. ] .~ ) |
| 47 |
32 46
|
eqtrd |
|- ( y e. ZZ -> ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) = [ <. 1 , y >. ] .~ ) |
| 48 |
5 6 28 29 30
|
qusmulrng |
|- ( ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) /\ ( <. 1 , y >. e. ( ZZ X. ZZ ) /\ <. 1 , 1 >. e. ( ZZ X. ZZ ) ) ) -> ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) = [ ( <. 1 , y >. ( .r ` R ) <. 1 , 1 >. ) ] .~ ) |
| 49 |
18 20 22 26 24 48
|
syl32anc |
|- ( y e. ZZ -> ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) = [ ( <. 1 , y >. ( .r ` R ) <. 1 , 1 >. ) ] .~ ) |
| 50 |
25 23
|
zmulcld |
|- ( y e. ZZ -> ( y x. 1 ) e. ZZ ) |
| 51 |
1 33 33 35 35 23 25 23 23 36 50 38 38 29
|
xpsmul |
|- ( y e. ZZ -> ( <. 1 , y >. ( .r ` R ) <. 1 , 1 >. ) = <. ( 1 x. 1 ) , ( y x. 1 ) >. ) |
| 52 |
42
|
mulridd |
|- ( y e. ZZ -> ( y x. 1 ) = y ) |
| 53 |
41 52
|
opeq12d |
|- ( y e. ZZ -> <. ( 1 x. 1 ) , ( y x. 1 ) >. = <. 1 , y >. ) |
| 54 |
51 53
|
eqtrd |
|- ( y e. ZZ -> ( <. 1 , y >. ( .r ` R ) <. 1 , 1 >. ) = <. 1 , y >. ) |
| 55 |
54
|
eceq1d |
|- ( y e. ZZ -> [ ( <. 1 , y >. ( .r ` R ) <. 1 , 1 >. ) ] .~ = [ <. 1 , y >. ] .~ ) |
| 56 |
49 55
|
eqtrd |
|- ( y e. ZZ -> ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) = [ <. 1 , y >. ] .~ ) |
| 57 |
47 56
|
jca |
|- ( y e. ZZ -> ( ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) = [ <. 1 , y >. ] .~ /\ ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) = [ <. 1 , y >. ] .~ ) ) |
| 58 |
1 2 3 4 5
|
pzriprnglem10 |
|- ( ( 1 e. ZZ /\ 1 e. ZZ ) -> [ <. 1 , 1 >. ] .~ = ( ZZ X. { 1 } ) ) |
| 59 |
12 12 58
|
mp2an |
|- [ <. 1 , 1 >. ] .~ = ( ZZ X. { 1 } ) |
| 60 |
59
|
eqcomi |
|- ( ZZ X. { 1 } ) = [ <. 1 , 1 >. ] .~ |
| 61 |
60
|
a1i |
|- ( X = [ <. 1 , y >. ] .~ -> ( ZZ X. { 1 } ) = [ <. 1 , 1 >. ] .~ ) |
| 62 |
|
id |
|- ( X = [ <. 1 , y >. ] .~ -> X = [ <. 1 , y >. ] .~ ) |
| 63 |
61 62
|
oveq12d |
|- ( X = [ <. 1 , y >. ] .~ -> ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) ) |
| 64 |
63 62
|
eqeq12d |
|- ( X = [ <. 1 , y >. ] .~ -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X <-> ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) = [ <. 1 , y >. ] .~ ) ) |
| 65 |
62 61
|
oveq12d |
|- ( X = [ <. 1 , y >. ] .~ -> ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) ) |
| 66 |
65 62
|
eqeq12d |
|- ( X = [ <. 1 , y >. ] .~ -> ( ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X <-> ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) = [ <. 1 , y >. ] .~ ) ) |
| 67 |
64 66
|
anbi12d |
|- ( X = [ <. 1 , y >. ] .~ -> ( ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X /\ ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X ) <-> ( ( [ <. 1 , 1 >. ] .~ ( .r ` Q ) [ <. 1 , y >. ] .~ ) = [ <. 1 , y >. ] .~ /\ ( [ <. 1 , y >. ] .~ ( .r ` Q ) [ <. 1 , 1 >. ] .~ ) = [ <. 1 , y >. ] .~ ) ) ) |
| 68 |
57 67
|
syl5ibrcom |
|- ( y e. ZZ -> ( X = [ <. 1 , y >. ] .~ -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X /\ ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X ) ) ) |
| 69 |
16 68
|
sylbid |
|- ( y e. ZZ -> ( X = ( ZZ X. { y } ) -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X /\ ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X ) ) ) |
| 70 |
11 69
|
syl5 |
|- ( y e. ZZ -> ( X e. { ( ZZ X. { y } ) } -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X /\ ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X ) ) ) |
| 71 |
70
|
rexlimiv |
|- ( E. y e. ZZ X e. { ( ZZ X. { y } ) } -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X /\ ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X ) ) |
| 72 |
10 71
|
sylbi |
|- ( X e. ( Base ` Q ) -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) X ) = X /\ ( X ( .r ` Q ) ( ZZ X. { 1 } ) ) = X ) ) |