Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
|
pzriprng.1 |
|- .1. = ( 1r ` J ) |
5 |
|
pzriprng.g |
|- .~ = ( R ~QG I ) |
6 |
|
pzriprng.q |
|- Q = ( R /s .~ ) |
7 |
1
|
pzriprnglem1 |
|- R e. Rng |
8 |
1 2 3
|
pzriprnglem8 |
|- I e. ( 2Ideal ` R ) |
9 |
1 2
|
pzriprnglem4 |
|- I e. ( SubGrp ` R ) |
10 |
5
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
11 |
6 10
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
12 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
13 |
11 12
|
qus2idrng |
|- ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) -> Q e. Rng ) |
14 |
7 8 9 13
|
mp3an |
|- Q e. Rng |
15 |
|
1z |
|- 1 e. ZZ |
16 |
|
zex |
|- ZZ e. _V |
17 |
|
snex |
|- { 1 } e. _V |
18 |
16 17
|
xpex |
|- ( ZZ X. { 1 } ) e. _V |
19 |
18
|
snid |
|- ( ZZ X. { 1 } ) e. { ( ZZ X. { 1 } ) } |
20 |
|
sneq |
|- ( y = 1 -> { y } = { 1 } ) |
21 |
20
|
xpeq2d |
|- ( y = 1 -> ( ZZ X. { y } ) = ( ZZ X. { 1 } ) ) |
22 |
21
|
sneqd |
|- ( y = 1 -> { ( ZZ X. { y } ) } = { ( ZZ X. { 1 } ) } ) |
23 |
22
|
eleq2d |
|- ( y = 1 -> ( ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } <-> ( ZZ X. { 1 } ) e. { ( ZZ X. { 1 } ) } ) ) |
24 |
23
|
rspcev |
|- ( ( 1 e. ZZ /\ ( ZZ X. { 1 } ) e. { ( ZZ X. { 1 } ) } ) -> E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } ) |
25 |
15 19 24
|
mp2an |
|- E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } |
26 |
|
eliun |
|- ( ( ZZ X. { 1 } ) e. U_ y e. ZZ { ( ZZ X. { y } ) } <-> E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } ) |
27 |
25 26
|
mpbir |
|- ( ZZ X. { 1 } ) e. U_ y e. ZZ { ( ZZ X. { y } ) } |
28 |
1 2 3 4 5 6
|
pzriprnglem11 |
|- ( Base ` Q ) = U_ y e. ZZ { ( ZZ X. { y } ) } |
29 |
27 28
|
eleqtrri |
|- ( ZZ X. { 1 } ) e. ( Base ` Q ) |
30 |
|
oveq1 |
|- ( i = ( ZZ X. { 1 } ) -> ( i ( .r ` Q ) x ) = ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) ) |
31 |
30
|
eqeq1d |
|- ( i = ( ZZ X. { 1 } ) -> ( ( i ( .r ` Q ) x ) = x <-> ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x ) ) |
32 |
31
|
ovanraleqv |
|- ( i = ( ZZ X. { 1 } ) -> ( A. x e. ( Base ` Q ) ( ( i ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) i ) = x ) <-> A. x e. ( Base ` Q ) ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) ) |
33 |
|
id |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) -> ( ZZ X. { 1 } ) e. ( Base ` Q ) ) |
34 |
1 2 3 4 5 6
|
pzriprnglem12 |
|- ( x e. ( Base ` Q ) -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) |
35 |
34
|
a1i |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) -> ( x e. ( Base ` Q ) -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) ) |
36 |
35
|
ralrimiv |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) -> A. x e. ( Base ` Q ) ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) |
37 |
32 33 36
|
rspcedvdw |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) -> E. i e. ( Base ` Q ) A. x e. ( Base ` Q ) ( ( i ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) i ) = x ) ) |
38 |
29 37
|
ax-mp |
|- E. i e. ( Base ` Q ) A. x e. ( Base ` Q ) ( ( i ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) i ) = x ) |
39 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
40 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
41 |
39 40
|
isringrng |
|- ( Q e. Ring <-> ( Q e. Rng /\ E. i e. ( Base ` Q ) A. x e. ( Base ` Q ) ( ( i ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) i ) = x ) ) ) |
42 |
14 38 41
|
mpbir2an |
|- Q e. Ring |