Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
|
pzriprng.1 |
|- .1. = ( 1r ` J ) |
5 |
|
pzriprng.g |
|- .~ = ( R ~QG I ) |
6 |
|
pzriprng.q |
|- Q = ( R /s .~ ) |
7 |
|
1z |
|- 1 e. ZZ |
8 |
|
sneq |
|- ( y = 1 -> { y } = { 1 } ) |
9 |
8
|
xpeq2d |
|- ( y = 1 -> ( ZZ X. { y } ) = ( ZZ X. { 1 } ) ) |
10 |
9
|
sneqd |
|- ( y = 1 -> { ( ZZ X. { y } ) } = { ( ZZ X. { 1 } ) } ) |
11 |
10
|
eleq2d |
|- ( y = 1 -> ( ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } <-> ( ZZ X. { 1 } ) e. { ( ZZ X. { 1 } ) } ) ) |
12 |
|
id |
|- ( 1 e. ZZ -> 1 e. ZZ ) |
13 |
|
zex |
|- ZZ e. _V |
14 |
|
snex |
|- { 1 } e. _V |
15 |
13 14
|
xpex |
|- ( ZZ X. { 1 } ) e. _V |
16 |
15
|
snid |
|- ( ZZ X. { 1 } ) e. { ( ZZ X. { 1 } ) } |
17 |
16
|
a1i |
|- ( 1 e. ZZ -> ( ZZ X. { 1 } ) e. { ( ZZ X. { 1 } ) } ) |
18 |
11 12 17
|
rspcedvdw |
|- ( 1 e. ZZ -> E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } ) |
19 |
7 18
|
ax-mp |
|- E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } |
20 |
1 2 3 4 5 6
|
pzriprnglem11 |
|- ( Base ` Q ) = U_ y e. ZZ { ( ZZ X. { y } ) } |
21 |
20
|
eleq2i |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) <-> ( ZZ X. { 1 } ) e. U_ y e. ZZ { ( ZZ X. { y } ) } ) |
22 |
|
eliun |
|- ( ( ZZ X. { 1 } ) e. U_ y e. ZZ { ( ZZ X. { y } ) } <-> E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } ) |
23 |
21 22
|
bitri |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) <-> E. y e. ZZ ( ZZ X. { 1 } ) e. { ( ZZ X. { y } ) } ) |
24 |
19 23
|
mpbir |
|- ( ZZ X. { 1 } ) e. ( Base ` Q ) |
25 |
1 2 3 4 5 6
|
pzriprnglem12 |
|- ( x e. ( Base ` Q ) -> ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) |
26 |
25
|
rgen |
|- A. x e. ( Base ` Q ) ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) |
27 |
24 26
|
pm3.2i |
|- ( ( ZZ X. { 1 } ) e. ( Base ` Q ) /\ A. x e. ( Base ` Q ) ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) |
28 |
1 2 3 4 5 6
|
pzriprnglem13 |
|- Q e. Ring |
29 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
30 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
31 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
32 |
29 30 31
|
isringid |
|- ( Q e. Ring -> ( ( ( ZZ X. { 1 } ) e. ( Base ` Q ) /\ A. x e. ( Base ` Q ) ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) <-> ( 1r ` Q ) = ( ZZ X. { 1 } ) ) ) |
33 |
28 32
|
ax-mp |
|- ( ( ( ZZ X. { 1 } ) e. ( Base ` Q ) /\ A. x e. ( Base ` Q ) ( ( ( ZZ X. { 1 } ) ( .r ` Q ) x ) = x /\ ( x ( .r ` Q ) ( ZZ X. { 1 } ) ) = x ) ) <-> ( 1r ` Q ) = ( ZZ X. { 1 } ) ) |
34 |
27 33
|
mpbi |
|- ( 1r ` Q ) = ( ZZ X. { 1 } ) |