Metamath Proof Explorer


Theorem pzriprnglem14

Description: Lemma 14 for pzriprng : The ring unity of the ring Q . (Contributed by AV, 23-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
pzriprng.1 1˙=1J
pzriprng.g ˙=R~QGI
pzriprng.q Q=R/𝑠˙
Assertion pzriprnglem14 1Q=×1

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 pzriprng.1 1˙=1J
5 pzriprng.g ˙=R~QGI
6 pzriprng.q Q=R/𝑠˙
7 1z 1
8 sneq y=1y=1
9 8 xpeq2d y=1×y=×1
10 9 sneqd y=1×y=×1
11 10 eleq2d y=1×1×y×1×1
12 id 11
13 zex V
14 snex 1V
15 13 14 xpex ×1V
16 15 snid ×1×1
17 16 a1i 1×1×1
18 11 12 17 rspcedvdw 1y×1×y
19 7 18 ax-mp y×1×y
20 1 2 3 4 5 6 pzriprnglem11 BaseQ=y×y
21 20 eleq2i ×1BaseQ×1y×y
22 eliun ×1y×yy×1×y
23 21 22 bitri ×1BaseQy×1×y
24 19 23 mpbir ×1BaseQ
25 1 2 3 4 5 6 pzriprnglem12 xBaseQ×1Qx=xxQ×1=x
26 25 rgen xBaseQ×1Qx=xxQ×1=x
27 24 26 pm3.2i ×1BaseQxBaseQ×1Qx=xxQ×1=x
28 1 2 3 4 5 6 pzriprnglem13 QRing
29 eqid BaseQ=BaseQ
30 eqid Q=Q
31 eqid 1Q=1Q
32 29 30 31 isringid QRing×1BaseQxBaseQ×1Qx=xxQ×1=x1Q=×1
33 28 32 ax-mp ×1BaseQxBaseQ×1Qx=xxQ×1=x1Q=×1
34 27 33 mpbi 1Q=×1