Description: Lemma 14 for pzriprng : The ring unity of the ring Q . (Contributed by AV, 23-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pzriprng.r | |
|
pzriprng.i | |
||
pzriprng.j | |
||
pzriprng.1 | |
||
pzriprng.g | |
||
pzriprng.q | |
||
Assertion | pzriprnglem14 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | |
|
2 | pzriprng.i | |
|
3 | pzriprng.j | |
|
4 | pzriprng.1 | |
|
5 | pzriprng.g | |
|
6 | pzriprng.q | |
|
7 | 1z | |
|
8 | sneq | |
|
9 | 8 | xpeq2d | |
10 | 9 | sneqd | |
11 | 10 | eleq2d | |
12 | id | |
|
13 | zex | |
|
14 | snex | |
|
15 | 13 14 | xpex | |
16 | 15 | snid | |
17 | 16 | a1i | |
18 | 11 12 17 | rspcedvdw | |
19 | 7 18 | ax-mp | |
20 | 1 2 3 4 5 6 | pzriprnglem11 | |
21 | 20 | eleq2i | |
22 | eliun | |
|
23 | 21 22 | bitri | |
24 | 19 23 | mpbir | |
25 | 1 2 3 4 5 6 | pzriprnglem12 | |
26 | 25 | rgen | |
27 | 24 26 | pm3.2i | |
28 | 1 2 3 4 5 6 | pzriprnglem13 | |
29 | eqid | |
|
30 | eqid | |
|
31 | eqid | |
|
32 | 29 30 31 | isringid | |
33 | 28 32 | ax-mp | |
34 | 27 33 | mpbi | |