Metamath Proof Explorer


Theorem pzriprnglem14

Description: Lemma 14 for pzriprng : The ring unity of the ring Q . (Contributed by AV, 23-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
pzriprng.j J = R 𝑠 I
pzriprng.1 1 ˙ = 1 J
pzriprng.g ˙ = R ~ QG I
pzriprng.q Q = R / 𝑠 ˙
Assertion pzriprnglem14 1 Q = × 1

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 pzriprng.j J = R 𝑠 I
4 pzriprng.1 1 ˙ = 1 J
5 pzriprng.g ˙ = R ~ QG I
6 pzriprng.q Q = R / 𝑠 ˙
7 1z 1
8 sneq y = 1 y = 1
9 8 xpeq2d y = 1 × y = × 1
10 9 sneqd y = 1 × y = × 1
11 10 eleq2d y = 1 × 1 × y × 1 × 1
12 id 1 1
13 zex V
14 snex 1 V
15 13 14 xpex × 1 V
16 15 snid × 1 × 1
17 16 a1i 1 × 1 × 1
18 11 12 17 rspcedvdw 1 y × 1 × y
19 7 18 ax-mp y × 1 × y
20 1 2 3 4 5 6 pzriprnglem11 Base Q = y × y
21 20 eleq2i × 1 Base Q × 1 y × y
22 eliun × 1 y × y y × 1 × y
23 21 22 bitri × 1 Base Q y × 1 × y
24 19 23 mpbir × 1 Base Q
25 1 2 3 4 5 6 pzriprnglem12 x Base Q × 1 Q x = x x Q × 1 = x
26 25 rgen x Base Q × 1 Q x = x x Q × 1 = x
27 24 26 pm3.2i × 1 Base Q x Base Q × 1 Q x = x x Q × 1 = x
28 1 2 3 4 5 6 pzriprnglem13 Q Ring
29 eqid Base Q = Base Q
30 eqid Q = Q
31 eqid 1 Q = 1 Q
32 29 30 31 isringid Q Ring × 1 Base Q x Base Q × 1 Q x = x x Q × 1 = x 1 Q = × 1
33 28 32 ax-mp × 1 Base Q x Base Q × 1 Q x = x x Q × 1 = x 1 Q = × 1
34 27 33 mpbi 1 Q = × 1