Description: Lemma 13 for pzriprng : Q is a unital ring. (Contributed by AV, 23-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pzriprng.r | |
|
pzriprng.i | |
||
pzriprng.j | |
||
pzriprng.1 | |
||
pzriprng.g | |
||
pzriprng.q | |
||
Assertion | pzriprnglem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | |
|
2 | pzriprng.i | |
|
3 | pzriprng.j | |
|
4 | pzriprng.1 | |
|
5 | pzriprng.g | |
|
6 | pzriprng.q | |
|
7 | 1 | pzriprnglem1 | |
8 | 1 2 3 | pzriprnglem8 | |
9 | 1 2 | pzriprnglem4 | |
10 | 5 | oveq2i | |
11 | 6 10 | eqtri | |
12 | eqid | |
|
13 | 11 12 | qus2idrng | |
14 | 7 8 9 13 | mp3an | |
15 | 1z | |
|
16 | zex | |
|
17 | snex | |
|
18 | 16 17 | xpex | |
19 | 18 | snid | |
20 | sneq | |
|
21 | 20 | xpeq2d | |
22 | 21 | sneqd | |
23 | 22 | eleq2d | |
24 | 23 | rspcev | |
25 | 15 19 24 | mp2an | |
26 | eliun | |
|
27 | 25 26 | mpbir | |
28 | 1 2 3 4 5 6 | pzriprnglem11 | |
29 | 27 28 | eleqtrri | |
30 | oveq1 | |
|
31 | 30 | eqeq1d | |
32 | 31 | ovanraleqv | |
33 | id | |
|
34 | 1 2 3 4 5 6 | pzriprnglem12 | |
35 | 34 | a1i | |
36 | 35 | ralrimiv | |
37 | 32 33 36 | rspcedvdw | |
38 | 29 37 | ax-mp | |
39 | eqid | |
|
40 | eqid | |
|
41 | 39 40 | isringrng | |
42 | 14 38 41 | mpbir2an | |