Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
|
pzriprng.1 |
|- .1. = ( 1r ` J ) |
5 |
|
pzriprng.g |
|- .~ = ( R ~QG I ) |
6 |
|
pzriprng.q |
|- Q = ( R /s .~ ) |
7 |
|
df-qs |
|- ( ( ZZ X. ZZ ) /. .~ ) = { e | E. p e. ( ZZ X. ZZ ) e = [ p ] .~ } |
8 |
6
|
a1i |
|- ( .~ = ( R ~QG I ) -> Q = ( R /s .~ ) ) |
9 |
1
|
pzriprnglem2 |
|- ( Base ` R ) = ( ZZ X. ZZ ) |
10 |
9
|
eqcomi |
|- ( ZZ X. ZZ ) = ( Base ` R ) |
11 |
10
|
a1i |
|- ( .~ = ( R ~QG I ) -> ( ZZ X. ZZ ) = ( Base ` R ) ) |
12 |
|
ovexd |
|- ( .~ = ( R ~QG I ) -> ( R ~QG I ) e. _V ) |
13 |
5 12
|
eqeltrid |
|- ( .~ = ( R ~QG I ) -> .~ e. _V ) |
14 |
1
|
pzriprnglem1 |
|- R e. Rng |
15 |
14
|
a1i |
|- ( .~ = ( R ~QG I ) -> R e. Rng ) |
16 |
8 11 13 15
|
qusbas |
|- ( .~ = ( R ~QG I ) -> ( ( ZZ X. ZZ ) /. .~ ) = ( Base ` Q ) ) |
17 |
5 16
|
ax-mp |
|- ( ( ZZ X. ZZ ) /. .~ ) = ( Base ` Q ) |
18 |
|
nfcv |
|- F/_ s { e | e = [ p ] .~ } |
19 |
|
nfcv |
|- F/_ r { e | e = [ p ] .~ } |
20 |
|
nfcv |
|- F/_ p { e | e = [ <. s , r >. ] .~ } |
21 |
|
eceq1 |
|- ( p = <. s , r >. -> [ p ] .~ = [ <. s , r >. ] .~ ) |
22 |
21
|
eqeq2d |
|- ( p = <. s , r >. -> ( e = [ p ] .~ <-> e = [ <. s , r >. ] .~ ) ) |
23 |
22
|
abbidv |
|- ( p = <. s , r >. -> { e | e = [ p ] .~ } = { e | e = [ <. s , r >. ] .~ } ) |
24 |
18 19 20 23
|
iunxpf |
|- U_ p e. ( ZZ X. ZZ ) { e | e = [ p ] .~ } = U_ s e. ZZ U_ r e. ZZ { e | e = [ <. s , r >. ] .~ } |
25 |
|
iunab |
|- U_ p e. ( ZZ X. ZZ ) { e | e = [ p ] .~ } = { e | E. p e. ( ZZ X. ZZ ) e = [ p ] .~ } |
26 |
|
iuncom |
|- U_ s e. ZZ U_ r e. ZZ { e | e = [ <. s , r >. ] .~ } = U_ r e. ZZ U_ s e. ZZ { e | e = [ <. s , r >. ] .~ } |
27 |
|
df-sn |
|- { [ <. s , r >. ] .~ } = { e | e = [ <. s , r >. ] .~ } |
28 |
27
|
eqcomi |
|- { e | e = [ <. s , r >. ] .~ } = { [ <. s , r >. ] .~ } |
29 |
28
|
a1i |
|- ( s e. ZZ -> { e | e = [ <. s , r >. ] .~ } = { [ <. s , r >. ] .~ } ) |
30 |
29
|
iuneq2i |
|- U_ s e. ZZ { e | e = [ <. s , r >. ] .~ } = U_ s e. ZZ { [ <. s , r >. ] .~ } |
31 |
|
simpr |
|- ( ( ( r e. ZZ /\ s e. ZZ ) /\ p = [ <. s , r >. ] .~ ) -> p = [ <. s , r >. ] .~ ) |
32 |
1 2 3 4 5
|
pzriprnglem10 |
|- ( ( s e. ZZ /\ r e. ZZ ) -> [ <. s , r >. ] .~ = ( ZZ X. { r } ) ) |
33 |
32
|
ancoms |
|- ( ( r e. ZZ /\ s e. ZZ ) -> [ <. s , r >. ] .~ = ( ZZ X. { r } ) ) |
34 |
33
|
adantr |
|- ( ( ( r e. ZZ /\ s e. ZZ ) /\ p = [ <. s , r >. ] .~ ) -> [ <. s , r >. ] .~ = ( ZZ X. { r } ) ) |
35 |
31 34
|
eqtrd |
|- ( ( ( r e. ZZ /\ s e. ZZ ) /\ p = [ <. s , r >. ] .~ ) -> p = ( ZZ X. { r } ) ) |
36 |
35
|
ex |
|- ( ( r e. ZZ /\ s e. ZZ ) -> ( p = [ <. s , r >. ] .~ -> p = ( ZZ X. { r } ) ) ) |
37 |
36
|
rexlimdva |
|- ( r e. ZZ -> ( E. s e. ZZ p = [ <. s , r >. ] .~ -> p = ( ZZ X. { r } ) ) ) |
38 |
|
0zd |
|- ( ( r e. ZZ /\ p = ( ZZ X. { r } ) ) -> 0 e. ZZ ) |
39 |
|
simpr |
|- ( ( r e. ZZ /\ p = ( ZZ X. { r } ) ) -> p = ( ZZ X. { r } ) ) |
40 |
|
opeq1 |
|- ( s = 0 -> <. s , r >. = <. 0 , r >. ) |
41 |
40
|
eceq1d |
|- ( s = 0 -> [ <. s , r >. ] .~ = [ <. 0 , r >. ] .~ ) |
42 |
39 41
|
eqeqan12d |
|- ( ( ( r e. ZZ /\ p = ( ZZ X. { r } ) ) /\ s = 0 ) -> ( p = [ <. s , r >. ] .~ <-> ( ZZ X. { r } ) = [ <. 0 , r >. ] .~ ) ) |
43 |
|
0zd |
|- ( r e. ZZ -> 0 e. ZZ ) |
44 |
1 2 3 4 5
|
pzriprnglem10 |
|- ( ( 0 e. ZZ /\ r e. ZZ ) -> [ <. 0 , r >. ] .~ = ( ZZ X. { r } ) ) |
45 |
43 44
|
mpancom |
|- ( r e. ZZ -> [ <. 0 , r >. ] .~ = ( ZZ X. { r } ) ) |
46 |
45
|
eqcomd |
|- ( r e. ZZ -> ( ZZ X. { r } ) = [ <. 0 , r >. ] .~ ) |
47 |
46
|
adantr |
|- ( ( r e. ZZ /\ p = ( ZZ X. { r } ) ) -> ( ZZ X. { r } ) = [ <. 0 , r >. ] .~ ) |
48 |
38 42 47
|
rspcedvd |
|- ( ( r e. ZZ /\ p = ( ZZ X. { r } ) ) -> E. s e. ZZ p = [ <. s , r >. ] .~ ) |
49 |
48
|
ex |
|- ( r e. ZZ -> ( p = ( ZZ X. { r } ) -> E. s e. ZZ p = [ <. s , r >. ] .~ ) ) |
50 |
37 49
|
impbid |
|- ( r e. ZZ -> ( E. s e. ZZ p = [ <. s , r >. ] .~ <-> p = ( ZZ X. { r } ) ) ) |
51 |
50
|
abbidv |
|- ( r e. ZZ -> { p | E. s e. ZZ p = [ <. s , r >. ] .~ } = { p | p = ( ZZ X. { r } ) } ) |
52 |
|
iunsn |
|- U_ s e. ZZ { [ <. s , r >. ] .~ } = { p | E. s e. ZZ p = [ <. s , r >. ] .~ } |
53 |
|
df-sn |
|- { ( ZZ X. { r } ) } = { p | p = ( ZZ X. { r } ) } |
54 |
51 52 53
|
3eqtr4g |
|- ( r e. ZZ -> U_ s e. ZZ { [ <. s , r >. ] .~ } = { ( ZZ X. { r } ) } ) |
55 |
30 54
|
eqtrid |
|- ( r e. ZZ -> U_ s e. ZZ { e | e = [ <. s , r >. ] .~ } = { ( ZZ X. { r } ) } ) |
56 |
55
|
iuneq2i |
|- U_ r e. ZZ U_ s e. ZZ { e | e = [ <. s , r >. ] .~ } = U_ r e. ZZ { ( ZZ X. { r } ) } |
57 |
26 56
|
eqtri |
|- U_ s e. ZZ U_ r e. ZZ { e | e = [ <. s , r >. ] .~ } = U_ r e. ZZ { ( ZZ X. { r } ) } |
58 |
24 25 57
|
3eqtr3i |
|- { e | E. p e. ( ZZ X. ZZ ) e = [ p ] .~ } = U_ r e. ZZ { ( ZZ X. { r } ) } |
59 |
7 17 58
|
3eqtr3i |
|- ( Base ` Q ) = U_ r e. ZZ { ( ZZ X. { r } ) } |