Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ZZring Xs. ZZring ) = ( ZZring Xs. ZZring ) |
2 |
1
|
pzriprnglem1 |
|- ( ZZring Xs. ZZring ) e. Rng |
3 |
|
eqid |
|- ( ZZ X. { 0 } ) = ( ZZ X. { 0 } ) |
4 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) = ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) |
5 |
1 3 4
|
pzriprnglem8 |
|- ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) |
6 |
2 5
|
pm3.2i |
|- ( ( ZZring Xs. ZZring ) e. Rng /\ ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ) |
7 |
1 3 4
|
pzriprnglem7 |
|- ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring |
8 |
|
eqid |
|- ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) = ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) |
9 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) = ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) |
10 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) = ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) |
11 |
1 3 4 8 9 10
|
pzriprnglem13 |
|- ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring |
12 |
7 11
|
pm3.2i |
|- ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) |
13 |
|
1z |
|- 1 e. ZZ |
14 |
|
1ex |
|- 1 e. _V |
15 |
14
|
snid |
|- 1 e. { 1 } |
16 |
13 15
|
opelxpii |
|- <. 1 , 1 >. e. ( ZZ X. { 1 } ) |
17 |
1 3 4 8 9 10
|
pzriprnglem14 |
|- ( 1r ` ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) ) = ( ZZ X. { 1 } ) |
18 |
16 17
|
eleqtrri |
|- <. 1 , 1 >. e. ( 1r ` ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) ) |
19 |
|
eqid |
|- ( .r ` ( ZZring Xs. ZZring ) ) = ( .r ` ( ZZring Xs. ZZring ) ) |
20 |
|
eqid |
|- ( -g ` ( ZZring Xs. ZZring ) ) = ( -g ` ( ZZring Xs. ZZring ) ) |
21 |
|
eqid |
|- ( +g ` ( ZZring Xs. ZZring ) ) = ( +g ` ( ZZring Xs. ZZring ) ) |
22 |
19 8 20 21
|
ring2idlqus1 |
|- ( ( ( ( ZZring Xs. ZZring ) e. Rng /\ ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ) /\ ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) /\ <. 1 , 1 >. e. ( 1r ` ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) ) ) -> ( ( ZZring Xs. ZZring ) e. Ring /\ ( 1r ` ( ZZring Xs. ZZring ) ) = ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ) ) ) |
23 |
22
|
simprd |
|- ( ( ( ( ZZring Xs. ZZring ) e. Rng /\ ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ) /\ ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) /\ <. 1 , 1 >. e. ( 1r ` ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) ) ) -> ( 1r ` ( ZZring Xs. ZZring ) ) = ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ) ) |
24 |
6 12 18 23
|
mp3an |
|- ( 1r ` ( ZZring Xs. ZZring ) ) = ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ) |
25 |
1 3 4 8
|
pzriprnglem9 |
|- ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) = <. 1 , 0 >. |
26 |
25
|
oveq1i |
|- ( ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) = ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) |
27 |
26
|
oveq2i |
|- ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) = ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) |
28 |
27 25
|
oveq12i |
|- ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) ) = ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) |
29 |
|
zringring |
|- ZZring e. Ring |
30 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
31 |
|
id |
|- ( ZZring e. Ring -> ZZring e. Ring ) |
32 |
13
|
a1i |
|- ( ZZring e. Ring -> 1 e. ZZ ) |
33 |
|
0zd |
|- ( ZZring e. Ring -> 0 e. ZZ ) |
34 |
|
zmulcl |
|- ( ( 1 e. ZZ /\ 1 e. ZZ ) -> ( 1 x. 1 ) e. ZZ ) |
35 |
13 13 34
|
mp2an |
|- ( 1 x. 1 ) e. ZZ |
36 |
35
|
a1i |
|- ( ZZring e. Ring -> ( 1 x. 1 ) e. ZZ ) |
37 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
38 |
37
|
eqcomi |
|- ( .r ` ZZring ) = x. |
39 |
38
|
oveqi |
|- ( 0 ( .r ` ZZring ) 1 ) = ( 0 x. 1 ) |
40 |
|
0z |
|- 0 e. ZZ |
41 |
|
zmulcl |
|- ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( 0 x. 1 ) e. ZZ ) |
42 |
40 13 41
|
mp2an |
|- ( 0 x. 1 ) e. ZZ |
43 |
39 42
|
eqeltri |
|- ( 0 ( .r ` ZZring ) 1 ) e. ZZ |
44 |
43
|
a1i |
|- ( ZZring e. Ring -> ( 0 ( .r ` ZZring ) 1 ) e. ZZ ) |
45 |
|
eqid |
|- ( .r ` ZZring ) = ( .r ` ZZring ) |
46 |
1 30 30 31 31 32 33 32 32 36 44 37 45 19
|
xpsmul |
|- ( ZZring e. Ring -> ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) = <. ( 1 x. 1 ) , ( 0 ( .r ` ZZring ) 1 ) >. ) |
47 |
29 46
|
ax-mp |
|- ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) = <. ( 1 x. 1 ) , ( 0 ( .r ` ZZring ) 1 ) >. |
48 |
47
|
oveq2i |
|- ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) = ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) <. ( 1 x. 1 ) , ( 0 ( .r ` ZZring ) 1 ) >. ) |
49 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
50 |
|
ax-1cn |
|- 1 e. CC |
51 |
50
|
mul02i |
|- ( 0 x. 1 ) = 0 |
52 |
39 51
|
eqtri |
|- ( 0 ( .r ` ZZring ) 1 ) = 0 |
53 |
49 52
|
opeq12i |
|- <. ( 1 x. 1 ) , ( 0 ( .r ` ZZring ) 1 ) >. = <. 1 , 0 >. |
54 |
53
|
oveq2i |
|- ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) <. ( 1 x. 1 ) , ( 0 ( .r ` ZZring ) 1 ) >. ) = ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) |
55 |
|
zringgrp |
|- ZZring e. Grp |
56 |
55
|
a1i |
|- ( 1 e. ZZ -> ZZring e. Grp ) |
57 |
|
id |
|- ( 1 e. ZZ -> 1 e. ZZ ) |
58 |
|
0zd |
|- ( 1 e. ZZ -> 0 e. ZZ ) |
59 |
|
eqid |
|- ( -g ` ZZring ) = ( -g ` ZZring ) |
60 |
1 30 30 56 56 57 57 57 58 59 59 20
|
xpsgrpsub |
|- ( 1 e. ZZ -> ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = <. ( 1 ( -g ` ZZring ) 1 ) , ( 1 ( -g ` ZZring ) 0 ) >. ) |
61 |
13 60
|
ax-mp |
|- ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = <. ( 1 ( -g ` ZZring ) 1 ) , ( 1 ( -g ` ZZring ) 0 ) >. |
62 |
48 54 61
|
3eqtri |
|- ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) = <. ( 1 ( -g ` ZZring ) 1 ) , ( 1 ( -g ` ZZring ) 0 ) >. |
63 |
62
|
oveq1i |
|- ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = ( <. ( 1 ( -g ` ZZring ) 1 ) , ( 1 ( -g ` ZZring ) 0 ) >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) |
64 |
59
|
zringsub |
|- ( ( 1 e. ZZ /\ 1 e. ZZ ) -> ( 1 ( -g ` ZZring ) 1 ) = ( 1 - 1 ) ) |
65 |
13 13 64
|
mp2an |
|- ( 1 ( -g ` ZZring ) 1 ) = ( 1 - 1 ) |
66 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
67 |
65 66
|
eqtri |
|- ( 1 ( -g ` ZZring ) 1 ) = 0 |
68 |
59
|
zringsub |
|- ( ( 1 e. ZZ /\ 0 e. ZZ ) -> ( 1 ( -g ` ZZring ) 0 ) = ( 1 - 0 ) ) |
69 |
13 40 68
|
mp2an |
|- ( 1 ( -g ` ZZring ) 0 ) = ( 1 - 0 ) |
70 |
67 69
|
opeq12i |
|- <. ( 1 ( -g ` ZZring ) 1 ) , ( 1 ( -g ` ZZring ) 0 ) >. = <. 0 , ( 1 - 0 ) >. |
71 |
70
|
oveq1i |
|- ( <. ( 1 ( -g ` ZZring ) 1 ) , ( 1 ( -g ` ZZring ) 0 ) >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = ( <. 0 , ( 1 - 0 ) >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) |
72 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
73 |
72
|
opeq2i |
|- <. 0 , ( 1 - 0 ) >. = <. 0 , 1 >. |
74 |
73
|
oveq1i |
|- ( <. 0 , ( 1 - 0 ) >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = ( <. 0 , 1 >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) |
75 |
29
|
a1i |
|- ( 1 e. ZZ -> ZZring e. Ring ) |
76 |
58 57
|
zaddcld |
|- ( 1 e. ZZ -> ( 0 + 1 ) e. ZZ ) |
77 |
57 58
|
zaddcld |
|- ( 1 e. ZZ -> ( 1 + 0 ) e. ZZ ) |
78 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
79 |
1 30 30 75 75 58 57 57 58 76 77 78 78 21
|
xpsadd |
|- ( 1 e. ZZ -> ( <. 0 , 1 >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = <. ( 0 + 1 ) , ( 1 + 0 ) >. ) |
80 |
13 79
|
ax-mp |
|- ( <. 0 , 1 >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = <. ( 0 + 1 ) , ( 1 + 0 ) >. |
81 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
82 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
83 |
81 82
|
opeq12i |
|- <. ( 0 + 1 ) , ( 1 + 0 ) >. = <. 1 , 1 >. |
84 |
74 80 83
|
3eqtri |
|- ( <. 0 , ( 1 - 0 ) >. ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = <. 1 , 1 >. |
85 |
63 71 84
|
3eqtri |
|- ( ( <. 1 , 1 >. ( -g ` ( ZZring Xs. ZZring ) ) ( <. 1 , 0 >. ( .r ` ( ZZring Xs. ZZring ) ) <. 1 , 1 >. ) ) ( +g ` ( ZZring Xs. ZZring ) ) <. 1 , 0 >. ) = <. 1 , 1 >. |
86 |
24 28 85
|
3eqtri |
|- ( 1r ` ( ZZring Xs. ZZring ) ) = <. 1 , 1 >. |