Metamath Proof Explorer


Theorem pzriprng1ALT

Description: The ring unity of the ring ( ZZring Xs. ZZring ) constructed from the ring unity of the two-sided ideal ( ZZ X. { 0 } ) and the ring unity of the quotient of the ring and the ideal (using ring2idlqus1 ). (Contributed by AV, 24-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pzriprng1ALT 1 ring × 𝑠 ring = 1 1

Proof

Step Hyp Ref Expression
1 eqid ring × 𝑠 ring = ring × 𝑠 ring
2 1 pzriprnglem1 ring × 𝑠 ring Rng
3 eqid × 0 = × 0
4 eqid ring × 𝑠 ring 𝑠 × 0 = ring × 𝑠 ring 𝑠 × 0
5 1 3 4 pzriprnglem8 × 0 2Ideal ring × 𝑠 ring
6 2 5 pm3.2i ring × 𝑠 ring Rng × 0 2Ideal ring × 𝑠 ring
7 1 3 4 pzriprnglem7 ring × 𝑠 ring 𝑠 × 0 Ring
8 eqid 1 ring × 𝑠 ring 𝑠 × 0 = 1 ring × 𝑠 ring 𝑠 × 0
9 eqid ring × 𝑠 ring ~ QG × 0 = ring × 𝑠 ring ~ QG × 0
10 eqid ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 = ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0
11 1 3 4 8 9 10 pzriprnglem13 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring
12 7 11 pm3.2i ring × 𝑠 ring 𝑠 × 0 Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring
13 1z 1
14 1ex 1 V
15 14 snid 1 1
16 13 15 opelxpii 1 1 × 1
17 1 3 4 8 9 10 pzriprnglem14 1 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 = × 1
18 16 17 eleqtrri 1 1 1 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0
19 eqid ring × 𝑠 ring = ring × 𝑠 ring
20 eqid - ring × 𝑠 ring = - ring × 𝑠 ring
21 eqid + ring × 𝑠 ring = + ring × 𝑠 ring
22 19 8 20 21 ring2idlqus1 ring × 𝑠 ring Rng × 0 2Ideal ring × 𝑠 ring ring × 𝑠 ring 𝑠 × 0 Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring 1 1 1 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 ring × 𝑠 ring Ring 1 ring × 𝑠 ring = 1 1 - ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0
23 22 simprd ring × 𝑠 ring Rng × 0 2Ideal ring × 𝑠 ring ring × 𝑠 ring 𝑠 × 0 Ring ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 Ring 1 1 1 ring × 𝑠 ring / 𝑠 ring × 𝑠 ring ~ QG × 0 1 ring × 𝑠 ring = 1 1 - ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0
24 6 12 18 23 mp3an 1 ring × 𝑠 ring = 1 1 - ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0
25 1 3 4 8 pzriprnglem9 1 ring × 𝑠 ring 𝑠 × 0 = 1 0
26 25 oveq1i 1 ring × 𝑠 ring 𝑠 × 0 ring × 𝑠 ring 1 1 = 1 0 ring × 𝑠 ring 1 1
27 26 oveq2i 1 1 - ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0 ring × 𝑠 ring 1 1 = 1 1 - ring × 𝑠 ring 1 0 ring × 𝑠 ring 1 1
28 27 25 oveq12i 1 1 - ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 ring × 𝑠 ring 𝑠 × 0 = 1 1 - ring × 𝑠 ring 1 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 0
29 zringring ring Ring
30 zringbas = Base ring
31 id ring Ring ring Ring
32 13 a1i ring Ring 1
33 0zd ring Ring 0
34 zmulcl 1 1 1 1
35 13 13 34 mp2an 1 1
36 35 a1i ring Ring 1 1
37 zringmulr × = ring
38 37 eqcomi ring = ×
39 38 oveqi 0 ring 1 = 0 1
40 0z 0
41 zmulcl 0 1 0 1
42 40 13 41 mp2an 0 1
43 39 42 eqeltri 0 ring 1
44 43 a1i ring Ring 0 ring 1
45 eqid ring = ring
46 1 30 30 31 31 32 33 32 32 36 44 37 45 19 xpsmul ring Ring 1 0 ring × 𝑠 ring 1 1 = 1 1 0 ring 1
47 29 46 ax-mp 1 0 ring × 𝑠 ring 1 1 = 1 1 0 ring 1
48 47 oveq2i 1 1 - ring × 𝑠 ring 1 0 ring × 𝑠 ring 1 1 = 1 1 - ring × 𝑠 ring 1 1 0 ring 1
49 1t1e1 1 1 = 1
50 ax-1cn 1
51 50 mul02i 0 1 = 0
52 39 51 eqtri 0 ring 1 = 0
53 49 52 opeq12i 1 1 0 ring 1 = 1 0
54 53 oveq2i 1 1 - ring × 𝑠 ring 1 1 0 ring 1 = 1 1 - ring × 𝑠 ring 1 0
55 zringgrp ring Grp
56 55 a1i 1 ring Grp
57 id 1 1
58 0zd 1 0
59 eqid - ring = - ring
60 1 30 30 56 56 57 57 57 58 59 59 20 xpsgrpsub 1 1 1 - ring × 𝑠 ring 1 0 = 1 - ring 1 1 - ring 0
61 13 60 ax-mp 1 1 - ring × 𝑠 ring 1 0 = 1 - ring 1 1 - ring 0
62 48 54 61 3eqtri 1 1 - ring × 𝑠 ring 1 0 ring × 𝑠 ring 1 1 = 1 - ring 1 1 - ring 0
63 62 oveq1i 1 1 - ring × 𝑠 ring 1 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 0 = 1 - ring 1 1 - ring 0 + ring × 𝑠 ring 1 0
64 59 zringsub 1 1 1 - ring 1 = 1 1
65 13 13 64 mp2an 1 - ring 1 = 1 1
66 1m1e0 1 1 = 0
67 65 66 eqtri 1 - ring 1 = 0
68 59 zringsub 1 0 1 - ring 0 = 1 0
69 13 40 68 mp2an 1 - ring 0 = 1 0
70 67 69 opeq12i 1 - ring 1 1 - ring 0 = 0 1 0
71 70 oveq1i 1 - ring 1 1 - ring 0 + ring × 𝑠 ring 1 0 = 0 1 0 + ring × 𝑠 ring 1 0
72 1m0e1 1 0 = 1
73 72 opeq2i 0 1 0 = 0 1
74 73 oveq1i 0 1 0 + ring × 𝑠 ring 1 0 = 0 1 + ring × 𝑠 ring 1 0
75 29 a1i 1 ring Ring
76 58 57 zaddcld 1 0 + 1
77 57 58 zaddcld 1 1 + 0
78 zringplusg + = + ring
79 1 30 30 75 75 58 57 57 58 76 77 78 78 21 xpsadd 1 0 1 + ring × 𝑠 ring 1 0 = 0 + 1 1 + 0
80 13 79 ax-mp 0 1 + ring × 𝑠 ring 1 0 = 0 + 1 1 + 0
81 0p1e1 0 + 1 = 1
82 1p0e1 1 + 0 = 1
83 81 82 opeq12i 0 + 1 1 + 0 = 1 1
84 74 80 83 3eqtri 0 1 0 + ring × 𝑠 ring 1 0 = 1 1
85 63 71 84 3eqtri 1 1 - ring × 𝑠 ring 1 0 ring × 𝑠 ring 1 1 + ring × 𝑠 ring 1 0 = 1 1
86 24 28 85 3eqtri 1 ring × 𝑠 ring = 1 1