Metamath Proof Explorer


Theorem xpsgrpsub

Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025)

Ref Expression
Hypotheses xpsinv.t T=R×𝑠S
xpsinv.x X=BaseR
xpsinv.y Y=BaseS
xpsinv.r φRGrp
xpsinv.s φSGrp
xpsinv.a φAX
xpsinv.b φBY
xpsgrpsub.c φCX
xpsgrpsub.d φDY
xpsgrpsub.m ·˙=-R
xpsgrpsub.n ×˙=-S
xpsgrpsub.o -˙=-T
Assertion xpsgrpsub φAB-˙CD=A·˙CB×˙D

Proof

Step Hyp Ref Expression
1 xpsinv.t T=R×𝑠S
2 xpsinv.x X=BaseR
3 xpsinv.y Y=BaseS
4 xpsinv.r φRGrp
5 xpsinv.s φSGrp
6 xpsinv.a φAX
7 xpsinv.b φBY
8 xpsgrpsub.c φCX
9 xpsgrpsub.d φDY
10 xpsgrpsub.m ·˙=-R
11 xpsgrpsub.n ×˙=-S
12 xpsgrpsub.o -˙=-T
13 2 10 grpsubcl RGrpAXCXA·˙CX
14 4 6 8 13 syl3anc φA·˙CX
15 3 11 grpsubcl SGrpBYDYB×˙DY
16 5 7 9 15 syl3anc φB×˙DY
17 eqid +R=+R
18 2 17 4 14 8 grpcld φA·˙C+RCX
19 eqid +S=+S
20 3 19 5 16 9 grpcld φB×˙D+SDY
21 eqid +T=+T
22 1 2 3 4 5 14 16 8 9 18 20 17 19 21 xpsadd φA·˙CB×˙D+TCD=A·˙C+RCB×˙D+SD
23 2 17 10 grpnpcan RGrpAXCXA·˙C+RC=A
24 4 6 8 23 syl3anc φA·˙C+RC=A
25 3 19 11 grpnpcan SGrpBYDYB×˙D+SD=B
26 5 7 9 25 syl3anc φB×˙D+SD=B
27 24 26 opeq12d φA·˙C+RCB×˙D+SD=AB
28 22 27 eqtrd φA·˙CB×˙D+TCD=AB
29 1 xpsgrp RGrpSGrpTGrp
30 4 5 29 syl2anc φTGrp
31 6 7 opelxpd φABX×Y
32 1 2 3 4 5 xpsbas φX×Y=BaseT
33 31 32 eleqtrd φABBaseT
34 8 9 opelxpd φCDX×Y
35 34 32 eleqtrd φCDBaseT
36 14 16 opelxpd φA·˙CB×˙DX×Y
37 36 32 eleqtrd φA·˙CB×˙DBaseT
38 eqid BaseT=BaseT
39 38 21 12 grpsubadd TGrpABBaseTCDBaseTA·˙CB×˙DBaseTAB-˙CD=A·˙CB×˙DA·˙CB×˙D+TCD=AB
40 30 33 35 37 39 syl13anc φAB-˙CD=A·˙CB×˙DA·˙CB×˙D+TCD=AB
41 28 40 mpbird φAB-˙CD=A·˙CB×˙D