Metamath Proof Explorer


Theorem xpsbas

Description: The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpsval.t T=R×𝑠S
xpsval.x X=BaseR
xpsval.y Y=BaseS
xpsval.1 φRV
xpsval.2 φSW
Assertion xpsbas φX×Y=BaseT

Proof

Step Hyp Ref Expression
1 xpsval.t T=R×𝑠S
2 xpsval.x X=BaseR
3 xpsval.y Y=BaseS
4 xpsval.1 φRV
5 xpsval.2 φSW
6 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
7 eqid ScalarR=ScalarR
8 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
9 1 2 3 4 5 6 7 8 xpsval φT=xX,yYx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
10 1 2 3 4 5 6 7 8 xpsrnbas φranxX,yYx1𝑜y=BaseScalarR𝑠R1𝑜S
11 6 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
12 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
13 11 12 ax-mp xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
14 f1ofo xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×YxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
15 13 14 mp1i φxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
16 ovexd φScalarR𝑠R1𝑜SV
17 9 10 15 16 imasbas φX×Y=BaseT