| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpsinv.t |
⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) |
| 2 |
|
xpsinv.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
| 3 |
|
xpsinv.y |
⊢ 𝑌 = ( Base ‘ 𝑆 ) |
| 4 |
|
xpsinv.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 5 |
|
xpsinv.s |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 6 |
|
xpsinv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 7 |
|
xpsinv.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 8 |
|
xpsgrpsub.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 9 |
|
xpsgrpsub.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
| 10 |
|
xpsgrpsub.m |
⊢ · = ( -g ‘ 𝑅 ) |
| 11 |
|
xpsgrpsub.n |
⊢ × = ( -g ‘ 𝑆 ) |
| 12 |
|
xpsgrpsub.o |
⊢ − = ( -g ‘ 𝑇 ) |
| 13 |
2 10
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐶 ) ∈ 𝑋 ) |
| 14 |
4 6 8 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ 𝑋 ) |
| 15 |
3 11
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( 𝐵 × 𝐷 ) ∈ 𝑌 ) |
| 16 |
5 7 9 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 × 𝐷 ) ∈ 𝑌 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 18 |
2 17 4 14 8
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝑋 ) |
| 19 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 20 |
3 19 5 16 9
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) ∈ 𝑌 ) |
| 21 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 22 |
1 2 3 4 5 14 16 8 9 18 20 17 19 21
|
xpsadd |
⊢ ( 𝜑 → ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) 〉 ) |
| 23 |
2 17 10
|
grpnpcan |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) = 𝐴 ) |
| 24 |
4 6 8 23
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) = 𝐴 ) |
| 25 |
3 19 11
|
grpnpcan |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) = 𝐵 ) |
| 26 |
5 7 9 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) = 𝐵 ) |
| 27 |
24 26
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 28 |
22 27
|
eqtrd |
⊢ ( 𝜑 → ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
| 29 |
1
|
xpsgrp |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp ) |
| 30 |
4 5 29
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
| 31 |
6 7
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 32 |
1 2 3 4 5
|
xpsbas |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) ) |
| 33 |
31 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 34 |
8 9
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 35 |
34 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 36 |
14 16
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 37 |
36 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 38 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 39 |
38 21 12
|
grpsubadd |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( Base ‘ 𝑇 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ↔ ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) ) |
| 40 |
30 33 35 37 39
|
syl13anc |
⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ↔ ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) ) |
| 41 |
28 40
|
mpbird |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ) |