Metamath Proof Explorer


Theorem qusaddval

Description: The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses qusaddf.u φU=R/𝑠˙
qusaddf.v φV=BaseR
qusaddf.r φ˙ErV
qusaddf.z φRZ
qusaddf.e φa˙pb˙qa·˙b˙p·˙q
qusaddf.c φpVqVp·˙qV
qusaddf.p ·˙=+R
qusaddf.a ˙=+U
Assertion qusaddval φXVYVX˙˙Y˙=X·˙Y˙

Proof

Step Hyp Ref Expression
1 qusaddf.u φU=R/𝑠˙
2 qusaddf.v φV=BaseR
3 qusaddf.r φ˙ErV
4 qusaddf.z φRZ
5 qusaddf.e φa˙pb˙qa·˙b˙p·˙q
6 qusaddf.c φpVqVp·˙qV
7 qusaddf.p ·˙=+R
8 qusaddf.a ˙=+U
9 eqid xVx˙=xVx˙
10 fvex BaseRV
11 2 10 eqeltrdi φVV
12 erex ˙ErVVV˙V
13 3 11 12 sylc φ˙V
14 1 2 9 13 4 qusval φU=xVx˙𝑠R
15 1 2 9 13 4 quslem φxVx˙:VontoV/˙
16 14 2 15 4 7 8 imasplusg φ˙=pVqVxVx˙pxVx˙qxVx˙p·˙q
17 1 2 3 4 5 6 9 16 qusaddvallem φXVYVX˙˙Y˙=X·˙Y˙