Metamath Proof Explorer


Theorem quseccl0

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) Generalization of quseccl for arbitrary sets G . (Revised by AV, 24-Feb-2025)

Ref Expression
Hypotheses quseccl0.e ˙=G~QGS
quseccl0.h H=G/𝑠˙
quseccl0.c C=BaseG
quseccl0.b B=BaseH
Assertion quseccl0 GVXCX˙B

Proof

Step Hyp Ref Expression
1 quseccl0.e ˙=G~QGS
2 quseccl0.h H=G/𝑠˙
3 quseccl0.c C=BaseG
4 quseccl0.b B=BaseH
5 1 ovexi ˙V
6 5 ecelqsi XCX˙C/˙
7 6 adantl GVXCX˙C/˙
8 2 a1i GVXCH=G/𝑠˙
9 3 a1i GVXCC=BaseG
10 5 a1i GVXC˙V
11 simpl GVXCGV
12 8 9 10 11 qusbas GVXCC/˙=BaseH
13 12 4 eqtr4di GVXCC/˙=B
14 7 13 eleqtrd GVXCX˙B