Metamath Proof Explorer


Theorem quselbas

Description: Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025)

Ref Expression
Hypotheses quselbas.e ˙=G~QGS
quselbas.u U=G/𝑠˙
quselbas.b B=BaseG
Assertion quselbas GVXWXBaseUxBX=x˙

Proof

Step Hyp Ref Expression
1 quselbas.e ˙=G~QGS
2 quselbas.u U=G/𝑠˙
3 quselbas.b B=BaseG
4 2 a1i GVXWU=G/𝑠˙
5 3 a1i GVXWB=BaseG
6 1 ovexi ˙V
7 6 a1i GVXW˙V
8 simpl GVXWGV
9 4 5 7 8 qusbas GVXWB/˙=BaseU
10 9 eqcomd GVXWBaseU=B/˙
11 10 eleq2d GVXWXBaseUXB/˙
12 elqsg XWXB/˙xBX=x˙
13 12 adantl GVXWXB/˙xBX=x˙
14 11 13 bitrd GVXWXBaseUxBX=x˙