Metamath Proof Explorer


Theorem qustriv

Description: The quotient of a group G by itself is trivial. (Contributed by Thierry Arnoux, 15-Jan-2024)

Ref Expression
Hypotheses qustriv.1 B=BaseG
qustriv.2 Q=G/𝑠G~QGB
Assertion qustriv GGrpBaseQ=B

Proof

Step Hyp Ref Expression
1 qustriv.1 B=BaseG
2 qustriv.2 Q=G/𝑠G~QGB
3 1 qusxpid GGrpG~QGB=B×B
4 3 qseq2d GGrpB/G~QGB=B/B×B
5 2 a1i GGrpQ=G/𝑠G~QGB
6 1 a1i GGrpB=BaseG
7 ovexd GGrpG~QGBV
8 id GGrpGGrp
9 5 6 7 8 qusbas GGrpB/G~QGB=BaseQ
10 1 grpbn0 GGrpB
11 qsxpid BB/B×B=B
12 10 11 syl GGrpB/B×B=B
13 4 9 12 3eqtr3d GGrpBaseQ=B