Metamath Proof Explorer


Theorem r19.30

Description: Restricted quantifier version of 19.30 . (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 5-Nov-2024)

Ref Expression
Assertion r19.30 xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 pm2.53 φψ¬φψ
2 1 ralimi xAφψxA¬φψ
3 rexnal xA¬φ¬xAφ
4 3 biimpri ¬xAφxA¬φ
5 rexim xA¬φψxA¬φxAψ
6 2 4 5 syl2im xAφψ¬xAφxAψ
7 6 orrd xAφψxAφxAψ