Metamath Proof Explorer


Theorem r19.35

Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003)

Ref Expression
Assertion r19.35 x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 rexim x A φ ψ ψ x A φ ψ x A ψ
2 pm2.27 φ φ ψ ψ
3 2 ralimi x A φ x A φ ψ ψ
4 1 3 syl11 x A φ ψ x A φ x A ψ
5 rexnal x A ¬ φ ¬ x A φ
6 pm2.21 ¬ φ φ ψ
7 6 reximi x A ¬ φ x A φ ψ
8 5 7 sylbir ¬ x A φ x A φ ψ
9 ax-1 ψ φ ψ
10 9 reximi x A ψ x A φ ψ
11 8 10 ja x A φ x A ψ x A φ ψ
12 4 11 impbii x A φ ψ x A φ x A ψ