Metamath Proof Explorer


Theorem r19.35

Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003) (Proof shortened by Wolf Lammen, 22-Dec-2024)

Ref Expression
Assertion r19.35 x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 pm5.5 φ φ ψ ψ
2 1 ralrexbid x A φ x A φ ψ x A ψ
3 2 biimpcd x A φ ψ x A φ x A ψ
4 rexnal x A ¬ φ ¬ x A φ
5 pm2.21 ¬ φ φ ψ
6 5 reximi x A ¬ φ x A φ ψ
7 4 6 sylbir ¬ x A φ x A φ ψ
8 ax-1 ψ φ ψ
9 8 reximi x A ψ x A φ ψ
10 7 9 ja x A φ x A ψ x A φ ψ
11 3 10 impbii x A φ ψ x A φ x A ψ