Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
r19.35
Next ⟩
r19.36v
Metamath Proof Explorer
Ascii
Unicode
Theorem
r19.35
Description:
Restricted quantifier version of
19.35
.
(Contributed by
NM
, 20-Sep-2003)
Ref
Expression
Assertion
r19.35
⊢
∃
x
∈
A
φ
→
ψ
↔
∀
x
∈
A
φ
→
∃
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
rexim
⊢
∀
x
∈
A
φ
→
ψ
→
ψ
→
∃
x
∈
A
φ
→
ψ
→
∃
x
∈
A
ψ
2
pm2.27
⊢
φ
→
φ
→
ψ
→
ψ
3
2
ralimi
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
φ
→
ψ
→
ψ
4
1
3
syl11
⊢
∃
x
∈
A
φ
→
ψ
→
∀
x
∈
A
φ
→
∃
x
∈
A
ψ
5
rexnal
⊢
∃
x
∈
A
¬
φ
↔
¬
∀
x
∈
A
φ
6
pm2.21
⊢
¬
φ
→
φ
→
ψ
7
6
reximi
⊢
∃
x
∈
A
¬
φ
→
∃
x
∈
A
φ
→
ψ
8
5
7
sylbir
⊢
¬
∀
x
∈
A
φ
→
∃
x
∈
A
φ
→
ψ
9
ax-1
⊢
ψ
→
φ
→
ψ
10
9
reximi
⊢
∃
x
∈
A
ψ
→
∃
x
∈
A
φ
→
ψ
11
8
10
ja
⊢
∀
x
∈
A
φ
→
∃
x
∈
A
ψ
→
∃
x
∈
A
φ
→
ψ
12
4
11
impbii
⊢
∃
x
∈
A
φ
→
ψ
↔
∀
x
∈
A
φ
→
∃
x
∈
A
ψ