Metamath Proof Explorer


Theorem r19.35

Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003) (Proof shortened by Wolf Lammen, 22-Dec-2024)

Ref Expression
Assertion r19.35 xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 pm5.5 φφψψ
2 1 ralrexbid xAφxAφψxAψ
3 2 biimpcd xAφψxAφxAψ
4 rexnal xA¬φ¬xAφ
5 pm2.21 ¬φφψ
6 5 reximi xA¬φxAφψ
7 4 6 sylbir ¬xAφxAφψ
8 ax-1 ψφψ
9 8 reximi xAψxAφψ
10 7 9 ja xAφxAψxAφψ
11 3 10 impbii xAφψxAφxAψ