Metamath Proof Explorer


Theorem r19.35OLD

Description: Obsolete version of 19.35 as of 22-Dec-2024. (Contributed by NM, 20-Sep-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.35OLD xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 rexim xAφψψxAφψxAψ
2 pm2.27 φφψψ
3 2 ralimi xAφxAφψψ
4 1 3 syl11 xAφψxAφxAψ
5 rexnal xA¬φ¬xAφ
6 pm2.21 ¬φφψ
7 6 reximi xA¬φxAφψ
8 5 7 sylbir ¬xAφxAφψ
9 ax-1 ψφψ
10 9 reximi xAψxAφψ
11 8 10 ja xAφxAψxAφψ
12 4 11 impbii xAφψxAφxAψ