| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 → 𝜓 ) → 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 2 |
|
pm2.27 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
| 3 |
2
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
| 4 |
1 3
|
syl11 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 5 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 6 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) |
| 7 |
6
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 8 |
5 7
|
sylbir |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 9 |
|
ax-1 |
⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) |
| 10 |
9
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 11 |
8 10
|
ja |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 12 |
4 11
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |