Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.36v
Metamath Proof Explorer
Description: Restricted quantifier version of one direction of 19.36 . (The other
direction holds iff A is nonempty, see r19.36zv .) (Contributed by NM , 22-Oct-2003)
Ref
Expression
Assertion
r19.36v
⊢ ∃ x ∈ A φ → ψ → ∀ x ∈ A φ → ψ
Proof
Step
Hyp
Ref
Expression
1
r19.35
⊢ ∃ x ∈ A φ → ψ ↔ ∀ x ∈ A φ → ∃ x ∈ A ψ
2
id
⊢ ψ → ψ
3
2
rexlimivw
⊢ ∃ x ∈ A ψ → ψ
4
3
imim2i
⊢ ∀ x ∈ A φ → ∃ x ∈ A ψ → ∀ x ∈ A φ → ψ
5
1 4
sylbi
⊢ ∃ x ∈ A φ → ψ → ∀ x ∈ A φ → ψ