Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification r19.36v  
				
		 
		
			
		 
		Description:   Restricted quantifier version of one direction of 19.36  .  (The other
       direction holds iff A  is nonempty, see r19.36zv  .)  (Contributed by NM , 22-Oct-2003) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					r19.36v    ⊢   ∃  x  ∈  A    φ   →   ψ      →    ∀  x  ∈  A   φ     →   ψ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							r19.35   ⊢   ∃  x  ∈  A    φ   →   ψ      ↔    ∀  x  ∈  A   φ     →   ∃  x  ∈  A   ψ           
						
							2 
								
							 
							id   ⊢   ψ   →   ψ        
						
							3 
								2 
							 
							rexlimivw   ⊢   ∃  x  ∈  A   ψ     →   ψ        
						
							4 
								3 
							 
							imim2i   ⊢    ∀  x  ∈  A   φ     →   ∃  x  ∈  A   ψ      →    ∀  x  ∈  A   φ     →   ψ         
						
							5 
								1  4 
							 
							sylbi   ⊢   ∃  x  ∈  A    φ   →   ψ      →    ∀  x  ∈  A   φ     →   ψ