Metamath Proof Explorer


Theorem r1ord3

Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of BellMachover p. 478. (Contributed by NM, 22-Sep-2003)

Ref Expression
Assertion r1ord3 AOnBOnABR1AR1B

Proof

Step Hyp Ref Expression
1 r1fnon R1FnOn
2 1 fndmi domR1=On
3 2 eleq2i AdomR1AOn
4 2 eleq2i BdomR1BOn
5 r1ord3g AdomR1BdomR1ABR1AR1B
6 3 4 5 syl2anbr AOnBOnABR1AR1B