Metamath Proof Explorer


Theorem raaan2

Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan . It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017)

Ref Expression
Hypotheses raaan2.1 yφ
raaan2.2 xψ
Assertion raaan2 A=B=xAyBφψxAφyBψ

Proof

Step Hyp Ref Expression
1 raaan2.1 yφ
2 raaan2.2 xψ
3 dfbi3 A=B=A=B=¬A=¬B=
4 rzal A=xAyBφψ
5 4 adantr A=B=xAyBφψ
6 rzal A=xAφ
7 6 adantr A=B=xAφ
8 rzal B=yBψ
9 8 adantl A=B=yBψ
10 pm5.1 xAyBφψxAφyBψxAyBφψxAφyBψ
11 5 7 9 10 syl12anc A=B=xAyBφψxAφyBψ
12 df-ne B¬B=
13 1 r19.28z ByBφψφyBψ
14 13 ralbidv BxAyBφψxAφyBψ
15 12 14 sylbir ¬B=xAyBφψxAφyBψ
16 df-ne A¬A=
17 nfcv _xB
18 17 2 nfralw xyBψ
19 18 r19.27z AxAφyBψxAφyBψ
20 16 19 sylbir ¬A=xAφyBψxAφyBψ
21 15 20 sylan9bbr ¬A=¬B=xAyBφψxAφyBψ
22 11 21 jaoi A=B=¬A=¬B=xAyBφψxAφyBψ
23 3 22 sylbi A=B=xAyBφψxAφyBψ