Metamath Proof Explorer


Theorem rabexgf

Description: A version of rabexg using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypothesis rabexgf.1 _xA
Assertion rabexgf AVxA|φV

Proof

Step Hyp Ref Expression
1 rabexgf.1 _xA
2 df-rab xA|φ=x|xAφ
3 simpl xAφxA
4 3 ss2abi x|xAφx|xA
5 1 abid2f x|xA=A
6 4 5 sseqtri x|xAφA
7 2 6 eqsstri xA|φA
8 ssexg xA|φAAVxA|φV
9 7 8 mpan AVxA|φV