Metamath Proof Explorer


Theorem rabsneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabsneu AVxB|φ=A∃!xBφ

Proof

Step Hyp Ref Expression
1 df-rab xB|φ=x|xBφ
2 1 eqeq1i xB|φ=Ax|xBφ=A
3 absneu AVx|xBφ=A∃!xxBφ
4 2 3 sylan2b AVxB|φ=A∃!xxBφ
5 df-reu ∃!xBφ∃!xxBφ
6 4 5 sylibr AVxB|φ=A∃!xBφ