Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsneu | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 ∈ 𝐵 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 2 | 1 | eqeq1i | ⊢ ( { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } = { 𝐴 } ) | 
| 3 | absneu | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } = { 𝐴 } ) → ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 4 | 2 3 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | 
| 5 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 ∈ 𝐵 𝜑 ) |