Metamath Proof Explorer


Theorem rabsnt

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses rabsnt.1 BV
rabsnt.2 x=Bφψ
Assertion rabsnt xA|φ=Bψ

Proof

Step Hyp Ref Expression
1 rabsnt.1 BV
2 rabsnt.2 x=Bφψ
3 1 snid BB
4 id xA|φ=BxA|φ=B
5 3 4 eleqtrrid xA|φ=BBxA|φ
6 2 elrab BxA|φBAψ
7 6 simprbi BxA|φψ
8 5 7 syl xA|φ=Bψ