Metamath Proof Explorer


Theorem rabssd

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses rabssd.1 xφ
rabssd.2 _xB
rabssd.3 φxAχxB
Assertion rabssd φxA|χB

Proof

Step Hyp Ref Expression
1 rabssd.1 xφ
2 rabssd.2 _xB
3 rabssd.3 φxAχxB
4 3 3exp φxAχxB
5 1 4 ralrimi φxAχxB
6 2 rabssf xA|χBxAχxB
7 5 6 sylibr φxA|χB