Metamath Proof Explorer


Theorem rabssdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015)

Ref Expression
Hypothesis rabssdv.1 φxAψxB
Assertion rabssdv φxA|ψB

Proof

Step Hyp Ref Expression
1 rabssdv.1 φxAψxB
2 1 3exp φxAψxB
3 2 ralrimiv φxAψxB
4 rabss xA|ψBxAψxB
5 3 4 sylibr φxA|ψB