Metamath Proof Explorer


Theorem rabssrabd

Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypotheses rabssrabd.1 φAB
rabssrabd.2 φψxAχ
Assertion rabssrabd φxA|ψxB|χ

Proof

Step Hyp Ref Expression
1 rabssrabd.1 φAB
2 rabssrabd.2 φψxAχ
3 3anan32 φψxAφxAψ
4 3 2 sylbir φxAψχ
5 4 ex φxAψχ
6 5 ss2rabdv φxA|ψxA|χ
7 rabss2 ABxA|χxB|χ
8 1 7 syl φxA|χxB|χ
9 6 8 sstrd φxA|ψxB|χ