Metamath Proof Explorer


Theorem ralbinrald

Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017)

Ref Expression
Hypotheses ralbinrald.1 φXA
ralbinrald.2 xAx=X
ralbinrald.3 x=Xψθ
Assertion ralbinrald φxAψθ

Proof

Step Hyp Ref Expression
1 ralbinrald.1 φXA
2 ralbinrald.2 xAx=X
3 ralbinrald.3 x=Xψθ
4 3 adantl φx=Xψθ
5 1 4 rspcdv φxAψθ
6 3 bicomd x=Xθψ
7 2 6 syl xAθψ
8 7 adantl φxAθψ
9 8 biimpd φxAθψ
10 9 ralrimdva φθxAψ
11 5 10 impbid φxAψθ