Metamath Proof Explorer


Theorem ralbinrald

Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017)

Ref Expression
Hypotheses ralbinrald.1 φ X A
ralbinrald.2 x A x = X
ralbinrald.3 x = X ψ θ
Assertion ralbinrald φ x A ψ θ

Proof

Step Hyp Ref Expression
1 ralbinrald.1 φ X A
2 ralbinrald.2 x A x = X
3 ralbinrald.3 x = X ψ θ
4 3 adantl φ x = X ψ θ
5 1 4 rspcdv φ x A ψ θ
6 3 bicomd x = X θ ψ
7 2 6 syl x A θ ψ
8 7 adantl φ x A θ ψ
9 8 biimpd φ x A θ ψ
10 9 ralrimdva φ θ x A ψ
11 5 10 impbid φ x A ψ θ