Metamath Proof Explorer


Theorem ralcom13

Description: Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021) (Proof shortened by Wolf Lammen, 2-Jan-2025)

Ref Expression
Assertion ralcom13 xAyBzCφzCyBxAφ

Proof

Step Hyp Ref Expression
1 ralrot3 xAyBzCφzCxAyBφ
2 ralcom xAyBφyBxAφ
3 2 ralbii zCxAyBφzCyBxAφ
4 1 3 bitri xAyBzCφzCyBxAφ