Metamath Proof Explorer


Theorem raldifb

Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018)

Ref Expression
Assertion raldifb xAxBφxABφ

Proof

Step Hyp Ref Expression
1 impexp xAxBφxAxBφ
2 df-nel xB¬xB
3 2 anbi2i xAxBxA¬xB
4 eldif xABxA¬xB
5 3 4 bitr4i xAxBxAB
6 5 imbi1i xAxBφxABφ
7 1 6 bitr3i xAxBφxABφ
8 7 ralbii2 xAxBφxABφ